
Scalable	Multi-Party	Computation	Protocols	for	

Machine	Learning	in	the	Honest-Majority	Setting

Fengrun	Liu,	Xiang	Xie,	Yu	Yu

Machine	Learning	and	Privacy

Product	Recommendation

Image	Processing

Virtual	Assistants:	generate	human-like	responses

More	data	—>	Better	models

Privacy-preserving	Machine	Learning	(PPML)

2PC:	[SecureML]	[Ezpc]	[Chameleon]	[Delphi]	…

3PC:	[ABY3]	[SecureNN]	[Falcon]	[DEK20]	…

4PC:	[Flash]	[Trident]	[Fantastic	Four]	[Swift]	…

Client-Server	Model

hospitals	(data) servers

split	into		
secret	shares

MPC	Protocols	for	PPML

Our	work:		scalable	and	efYicient		PPML	protocols	for	any	number	of	parties.

Scalability	from	Shamir’s	Secret	Sharing

f(2)

f(3)

f(4)

f(5)

f(1)

=>	secret	S

secret	S f(x) = s + a1x + a2x2

f(x) = s + a1x + a2x2 + … + atxt

• distributed	shares	to	n	parties

• can	be	reconstructed	from	 	t	+	1	parties≥
t-privacy

(denoted	by)[s]

Two	Challenges	in	Privacy-preserving	Neural	Networks

Flattening Dog
Bird
Cat

ReLU(x) = DReLU(x) ⋅ x• Non-linear	function

DReLU(x) = {1, x ≥ 0
0, x < 0

Max(a, b) = ReLU(a − b) + b

• Decimal	number

∈ ℤ2ℓ

	bitsd = 16

Decimal	Multiplications	in	Integer	Ring	ℤ2ℓ

x = x̄ (mod 2ℓ) = {x̄, x̄ ≥ 0
2ℓ − x̄, x̄ < 0

• Represent	an	integer	x̄ ∈ [−2ℓ−1,2ℓ−1)

(2’s	complement)

	bitsd = 16

∈ ℤ2ℓb b̄

c = a × b ∈ ℤ2ℓ c̄ = ā × b̄

	bits2d = 32

shift	the	bits	down	by	 	positions	

and	Yill	the	top	 	bits	with	MSB	of	

d

d c
Yilled	with	MSB

Trunc(c) c̄/2d

	bitsℓ = 64

∈ ℤ2ℓa ā

Represented	
Integers

• Truncation	on	 	:		performing	c c̄/2d

MSB	is	the	sign	bit

Decimal	Multiplications	in	Mersenne	Field	 		𝔽p (p = 2ℓ − 1)

shift	the	bits	down	by	 	positions	

and	Yill	the	top	 	bits	with	MSB	of	

d

d c

Truncation	in	 	=	Truncation	in	 	𝔽2ℓ−1 ℤ2ℓ

Represented	
Integers

x = x̄ (mod 2ℓ − 1) = {x̄, x̄ ≥ 0
2ℓ − 1 − x̄, x̄ < 0

• Represent	an	integer	x̄ ∈ (−2ℓ−1,2ℓ−1) 	bitsℓ = 64

	bitsd = 16MSB	is	the	sign	bit

∈ 𝔽2ℓ−1a

b

c = a × b

Trunc(c)

	bits2d = 32

	bitsd = 16Yilled	with	MSB

ā

b̄

c̄ = ā × b̄

c̄/2d

∈ 𝔽2ℓ−1

∈ 𝔽2ℓ−1

∈ 𝔽2ℓ−1

• Truncation	on	 	:		performing	c c̄/2d

Previous	Truncation	Protocol	with	A	Large	Gap

1. 	

2. Reveal	 	

3.

[a] = [x] + [r]

a

[Trunc(x)] = Trunc(a) − [Trunc(r)]

Preprocess:	a	pair	(,)	where	[r] [Trunc(r)] r ← 𝔽2ℓ−1

Online:	input	[x]

holds	w.h.p.	only	for	small	x < < 2ℓ − 1

A	Large	Gap	!!

truncation

d=3

x=162
+

r=161

a=323
=

a = x + r

(positive	overYlow)

ā < 0

x̄ > 0

r̄ > 0
+

≠

ā ≠ x̄ + r̄

Trunc(x)=20

Trunc(r)=20

Trunc(a)=488
≠

+

Trunc(a) ≠ Trunc(x) + Trunc(r)

incorrect	sign	bit:		
falsely	indicates	the	result	is	negative

For	example,	we	have	 	in	 .a = x + r 𝔽29−1

Yilled	with	the	incorrect	sign	bit

Previous	Truncation	Protocol	with	A	Large	Gap

Our	Truncation	Protocol	with	Only	1-bit	Gap

Trunc(x)=20

Trunc(r)=20

Trunc(a)=488
≠

+

ā < 0

x̄ > 0

r̄ > 0
+

≠

truncation

d=3

x=162
+

r=161

a=323
=

For	example,	we	have	 	in	 .a = x + r 𝔽29−1

Yilled	with	the	correct	sign	bit

truncation

d=3

(Actual	Result)
just	remove	the	
misYilled	top	 	bitsd - Δ

correct	sign	bit

Expected	Truncation:

(Expected	Result)

Trunc(a)=40

Trunc(a) = Trunc(x) + Trunc(r)

Our	Truncation	Protocol	with	Only	1-bit	Gap

Trunc(x)=20

Trunc(r)=20

Trunc(a)=488
≠

+

ā < 0

x̄ > 0

r̄ > 0
truncation

d=3

x=162
+

r=161

a=323
=

For	example,	we	have	 	in	 .a = x + r 𝔽29−1 	is	always	positive	=	1-bit	gapx

positive	overYlow	happens
- Δ

(Truncation	Result)

Trunc(a)=40

1-round	Fixed-point	Multiplication	
Protocol	with	Only	1-bit	Gap[DN07]

Non-linear	Function	via	Bitwise	Comparison

DReLU(x) = {1, x ≥ 0
0, x < 0

Bitwise	Comparison	(y_B < r_B)

(public) y_B

(secret) r_B

(secret) e_B

(y_B < r_B) = <e_B, r_B>

= 1

1. y = 2x + r

2. Reveal y

3. LSB(2x) = LSB(y) ⨁ LSB(r) ⨁ (y_B < r_B)

Fact:	MSB(x)	=	LSB	(2x)			holds	in	odd	rings

Arithmetic	Comparison	()x < 0
look for the first different bit

 XOR

(secret)

* Prefix-OR

(secret)

*	PreJix-OR	involves	 	multiplications:	 	for	ℓ bj =
j

⋁
i=1

ai j = 1,…, ℓ

public secret

bitwise	comparison

Round-Efficient	Prefix-OR	Protocol	via	Prefix-AND

Prefix-OR

(secret)

Prefix-AND

(secret)

Online	Complexity	of	PreYix-Mult[BB89]:		1	round

*	PreYix-AND:	compute	 	for	b̄j =
j

⋀
i=1

āi j = 1,…, ℓ*	PreYix-OR:	compute	 	for	bj =
j

⋁
i=1

ai j = 1,…, ℓ

Online	Complexity	of	[NO07]:		5	rounds

(secret)

(secret)

Other	Building	Blocks

2L DN Mult

DReLU
ReLUMaxpool

Building Blocks in NN
3	Rounds

3	Rounds	Rounds3 log m

Prefix-Mult

Prefix-OR

Bitwise-LTBasic Primitives

1	Round

1	Round

1	Round	&	No	Gap

Round	Complexity	in	Online	Phase

Performance:	Private	Inference

Simulate	3-63	parties	on	11	servers

online	runtime	(s)	from	3PC	to	63PC	in	the	LAN	setting

LAN:	15Gb/s,	delay	0.3ms	
WAN:	100Mb/s,		delay	40ms	

On
lin
e	
Ru
nt
im
e(
s)

0

0.025

0.05

0.075

0.1

Number	of	Parties

3PC 7PC 11PC 21PC 31PC 63PC

0.10

0.05
0.040.030.03

0.02 0.03
0.010.010.010.010.01

0.02

0.010.010.010.010.01

3-layer	DNN 3-layer	CNN 4-layer	CNN

Performance:	Private	Inference

online	runtime	(s)	from	3PC	to	63PC	in	the	WAN	setting

Simulate	3-63	parties	on	11	servers LAN:	15Gb/s,	delay	0.3ms	
WAN:	100Mb/s,		delay	40ms	

On
lin
e	
Ru
nt
im
e(
s)

0

1.25

2.5

3.75

5

Number	of	Parties

3PC 7PC 11PC 21PC 31PC 63PC

4.60

2.00
1.70

1.301.301.20
0.680.480.440.410.400.39 0.470.400.390.380.370.37

3-layer	DNN 3-layer	CNN 4-layer	CNN

The	End,	Questions?

f7ed.com/liu

http://f7ed.com/liu

