Scalable Multi-Party Computation Protocols for Machine Learning in the Honest-Majority Setting

Fengrun Liu, Xiang Xie, Yu Yu

Machine Learning and Privacy

Product Recommendation

Image Processing

Virtual Assistants: generate human-like responses

More data —> Better models

Privacy-preserving Machine Learning (PPML)

2PC: [SecureML] [Ezpc] [Chameleon] [Delphi] … 3PC: [ABY3] [SecureNN] [Falcon] [DEK20] … 4PC: [Flash] [Trident] [Fantastic Four] [Swift] …

Our work: scalable and efficient PPML protocols for any number of parties.

Scalability from Shamir's Secret Sharing

Two Challenges in Privacy-preserving Neural Networks

Decimal Multiplications in Integer Ring \mathbb{Z}_{2} *e*

 \times

• Represent an integer $\bar{x} \in [-2^{\ell-1}, 2^{\ell-1}]$

$$
x = \bar{x} \pmod{2^{\ell}} = \begin{cases} \bar{x}, & \bar{x} \ge 0 \\ 2^{\ell} - \bar{x}, & \bar{x} < 0 \end{cases}
$$

• Truncation on c : performing $\bar{c}/2^d$

shift the bits down by d positions and fill the top d bits with MSB of c (2's complement)

Decimal Multiplications in **Mersenne Field** \mathbb{F}_p ($p = 2^{\ell} - 1$)

• Represent an integer $\bar{x} \in (-2^{\ell-1}, 2^{\ell-1})$

$$
x = \bar{x} \text{ (mod } 2^{\ell} - 1) = \begin{cases} \bar{x}, & \bar{x} \ge 0 \\ 2^{\ell} - 1 - \bar{x}, & \bar{x} < 0 \end{cases}
$$

• Truncation on c : performing $\bar{c}/2^d$

Truncation in \mathbb{F}_{2^e-1} = **Truncation** in \mathbb{Z}_{2^e}

shift the bits down by d positions and fill the top d bits with MSB of c

Previous Truncation Protocol with A Large Gap

Preprocess: a pair ([*r*], [Trunc(*r*)]) where $r \leftarrow \mathbb{F}_{2^e-1}$ Online: input [*x*]

- 1. $[a] = [x] + [r]$
- 2. Reveal *a*
- 3. $[\text{Trunc}(x)] = \text{Trunc}(a) [\text{Trunc}(r)]$

A Large Gap !!

holds w.h.p. only for small $x < 2^e - 1$

incorrect sign bit: falsely indicates the result is negative

filled with the incorrect sign bit

Previous Truncation Protocol with A Large Gap

Our Truncation Protocol with Only 1-bit Gap

For example, we have $a = x + r$ in \mathbb{F}_{2^9-1} .

correct sign bit

Expected Truncation:

Our Truncation Protocol with Only 1-bit Gap

Non-linear Function via Bitwise Comparison

DReLU(x) =
$$
\begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}
$$

Fact: $MSB(x) = LSB(2x)$ holds in odd rings

* **Prefix-OR** involves ℓ multiplications: $b_j = \bigvee a_j$ for ⋁

Arithmetic Comparison (*x* < 0)

1.
$$
y = 2x + r
$$

\n2. Reveal y
\n3. LSB(2x) = LSB(y) \oplus LSB(r) \oplus $(y_B < r_B)$
\npublic secret

j

 $i=1$

bitwise comparison

Round-Efficient Prefix-OR Protocol via Prefix-AND

Online Complexity of Prefix-Mult[BB89]: 1 round

*Prefix-AND: compute
$$
\overline{b}_j = \bigwedge_{i=1}^j \overline{a}_i
$$
 for $j = 1,...$

* prefix-OR: compute
$$
b_j = \bigvee_{i=1}^j a_i
$$
 for $j = 1, ..., \ell$ * prefix-AND: compute $\bar{b}_j = \bigwedge_{i=1}^j \bar{a}_i$ for $j = 1, ..., \ell$

Online Complexity of [NO07]: 5 rounds

Other Building Blocks

Round Complexity in Online Phase

Performance: Private Inference

Simulate 3-63 parties on 11 servers

online runtime (s) from 3PC to 63PC in the LAN setting

LAN: 15Gb/s, delay 0.3ms WAN: 100Mb/s, delay 40ms

Number of Parties

Performance: Private Inference

Simulate 3-63 parties on 11 servers LAN: 15Gb/s, delay 0.3ms

online runtime (s) from 3PC to 63PC in the WAN setting

WAN: 100Mb/s, delay 40ms

Number of Parties

The End, Questions?

f7ed.com/liu

