Scalable Multi-Party Computation Protocols for Machine Learning in the Honest-Majority Setting

Fengrun Liu, Xiang Xie, Yu Yu

Machine Learning and Privacy

Product Recommendation

Image Processing

Virtual Assistants: generate human-like responses

More data —> **Better models**

Privacy-preserving Machine Learning (PPML)

Our work: scalable and efficient PPML protocols for any number of parties.

2PC: [SecureML] [Ezpc] [Chameleon] [Delphi] ... 3PC: [ABY3] [SecureNN] [Falcon] [DEK20] ... 4PC: [Flash] [Trident] [Fantastic Four] [Swift] ...

Scalability from Shamir's Secret Sharing

Two Challenges in Privacy-preserving Neural Networks

$$DReLU(x) = \begin{cases} 1, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Decimal Multiplications in Integer Ring $\mathbb{Z}_{2^{\ell}}$

Х

• Represent an integer $\bar{x} \in [-2^{\ell-1}, 2^{\ell-1})$

$$x = \bar{x} \pmod{2^{\ell}} = \begin{cases} \bar{x}, & \bar{x} \ge 0\\ 2^{\ell} - \bar{x}, & \bar{x} < 0 \end{cases}$$

• Truncation on c: performing $\bar{c}/2^d$

shift the bits down by *d* positions and fill the top *d* bits with MSB of *c* (2's complement)

Represented

Decimal Multiplications in Mersenne Field \mathbb{F}_p $(p = 2^{\ell} - 1)$

• Represent an integer $\bar{x} \in (-2^{\ell-1}, 2^{\ell-1})$

$$x = \bar{x} \pmod{2^{\ell} - 1} = \begin{cases} \bar{x}, & \bar{x} \ge 0\\ 2^{\ell} - 1 - \bar{x}, & \bar{x} < 0 \end{cases}$$

• Truncation on c: performing $\bar{c}/2^d$

Truncation in $\mathbb{F}_{2^{\ell}-1}$ = **Truncation in** $\mathbb{Z}_{2^{\ell}}$

shift the bits down by *d* positions and fill the top *d* bits with MSB of *c*

Represented

Previous Truncation Protocol with A Large Gap

Preprocess: a pair ([*r*], [Trunc(*r*)]) where $r \leftarrow \mathbb{F}_{2^{\ell}-1}$ Online: input [*x*]

- 1. [a] = [x] + [r]
- 2. Reveal *a*
- 3. $[\operatorname{Trunc}(x)] = \operatorname{Trunc}(a) [\operatorname{Trunc}(r)]$

A Large Gap !!

holds w.h.p. only for small $x < 2^{\ell} - 1$

Previous Truncation Protocol with A Large Gap

incorrect sign bit: falsely indicates the result is negative

filled with the incorrect sign bit

Our Truncation Protocol with Only 1-bit Gap

For example, we have a = x + r in \mathbb{F}_{2^9-1} .

Expected Truncation:

correct sign bit

Our Truncation Protocol with Only 1-bit Gap

Non-linear Function via Bitwise Comparison

Arithmetic Comparison (x < 0)

$$DReLU(x) = \begin{cases} 1, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Fact: MSB(x) = LSB(2x) holds in odd rings

1.
$$y = 2x + r$$

2. Reveal y
3. LSB(2x) = LSB(y) \oplus LSB(r) \oplus (y_B < r_B)
public secret

bitwise comparison

i=1

* **Prefix-OR** involves ℓ multiplications: $b_j = \bigvee a_i$ for $j = 1, ..., \ell$

Round-Efficient Prefix-OR Protocol via Prefix-AND

Online Complexity of [NO07]: 5 rounds

* Prefix-OR: compute
$$b_j = \bigvee_{i=1}^j a_i$$
 for $j = 1, ..., \ell$

Online Complexity of Prefix-Mult[BB89]: 1 round

* Prefix-AND: compute
$$\bar{b}_j = \bigwedge_{i=1}^j \bar{a}_i$$
 for $j = 1, ...$

Other Building Blocks

Round Complexity in Online Phase

Performance: Private Inference

Simulate 3-63 parties on 11 servers

Number of Parties

online runtime (s) from 3PC to 63PC in the LAN setting

LAN: 15Gb/s, delay 0.3ms WAN: 100Mb/s, delay 40ms

Performance: Private Inference

Simulate 3-63 parties on 11 servers

Number of Parties

online runtime (s) from 3PC to 63PC in the WAN setting

LAN: 15Gb/s, delay 0.3ms WAN: 100Mb/s, delay 40ms

The End, Questions?

f7ed.com/liu

