
Scalable Multi-Party Computation Protocols for

Machine Learning in the Honest-Majority Setting

Fengrun Liu, Xiang Xie, Yu Yu

Machine Learning and Privacy

Product Recommendation

Image Processing

Virtual Assistants: generate human-like responses

More data —> Better models

Privacy-preserving Machine Learning (PPML)

2PC: [SecureML] [Ezpc] [Chameleon] [Delphi] …

3PC: [ABY3] [SecureNN] [Falcon] [DEK20] …

4PC: [Flash] [Trident] [Fantastic Four] [Swift] …

Client-Server Model

hospitals (data) servers

split into 	
secret shares

MPC Protocols for PPML

Our work: scalable and efficient PPML protocols for any number of parties.

Scalability from Shamir’s Secret Sharing

f(2)

f(3)

f(4)

f(5)

f(1)

=> secret S

secret S f(x) = s + a1x + a2x2

f(x) = s + a1x + a2x2 + … + atxt

• distributed shares to n parties

• can be reconstructed from t + 1 parties≥
t-privacy

(denoted by)[s]

Two Challenges in Privacy-preserving Neural Networks

Flattening Dog
Bird
Cat

ReLU(x) = DReLU(x) ⋅ x• Non-linear function

DReLU(x) = {1, x ≥ 0
0, x < 0

Max(a, b) = ReLU(a − b) + b

• Decimal number

∈ ℤ2ℓ

 bitsd = 16

Decimal Multiplications in Integer Ring ℤ2ℓ

x = x̄ (mod 2ℓ) = {x̄, x̄ ≥ 0
2ℓ − x̄, x̄ < 0

• Represent an integer x̄ ∈ [−2ℓ−1,2ℓ−1)

(2’s complement)

 bitsd = 16

∈ ℤ2ℓb b̄

c = a × b ∈ ℤ2ℓ c̄ = ā × b̄

 bits2d = 32

shift the bits down by positions	

and fill the top bits with MSB of

d

d c
filled with MSB

Trunc(c) c̄/2d

 bitsℓ = 64

∈ ℤ2ℓa ā

Represented	
Integers

• Truncation on : performing c c̄/2d

MSB is the sign bit

Decimal Multiplications in Mersenne Field 𝔽p (p = 2ℓ − 1)

shift the bits down by positions	

and fill the top bits with MSB of

d

d c

Truncation in = Truncation in 𝔽2ℓ−1 ℤ2ℓ

Represented	
Integers

x = x̄ (mod 2ℓ − 1) = {x̄, x̄ ≥ 0
2ℓ − 1 − x̄, x̄ < 0

• Represent an integer x̄ ∈ (−2ℓ−1,2ℓ−1) bitsℓ = 64

 bitsd = 16MSB is the sign bit

∈ 𝔽2ℓ−1a

b

c = a × b

Trunc(c)

 bits2d = 32

 bitsd = 16filled with MSB

ā

b̄

c̄ = ā × b̄

c̄/2d

∈ 𝔽2ℓ−1

∈ 𝔽2ℓ−1

∈ 𝔽2ℓ−1

• Truncation on : performing c c̄/2d

Previous Truncation Protocol with A Large Gap

1. 	

2. Reveal 	

3.

[a] = [x] + [r]

a

[Trunc(x)] = Trunc(a) − [Trunc(r)]

Preprocess: a pair (,) where [r] [Trunc(r)] r ← 𝔽2ℓ−1

Online: input [x]

holds w.h.p. only for small x < < 2ℓ − 1

A Large Gap !!

truncation

d=3

x=162
+

r=161

a=323
=

a = x + r

(positive overflow)

ā < 0

x̄ > 0

r̄ > 0
+

≠

ā ≠ x̄ + r̄

Trunc(x)=20

Trunc(r)=20

Trunc(a)=488
≠

+

Trunc(a) ≠ Trunc(x) + Trunc(r)

incorrect sign bit: 	
falsely indicates the result is negative

For example, we have in .a = x + r 𝔽29−1

filled with the incorrect sign bit

Previous Truncation Protocol with A Large Gap

Our Truncation Protocol with Only 1-bit Gap

Trunc(x)=20

Trunc(r)=20

Trunc(a)=488
≠

+

ā < 0

x̄ > 0

r̄ > 0
+

≠

truncation

d=3

x=162
+

r=161

a=323
=

For example, we have in .a = x + r 𝔽29−1

filled with the correct sign bit

truncation

d=3

(Actual Result)
just remove the
misfilled top bitsd - Δ

correct sign bit

Expected Truncation:

(Expected Result)

Trunc(a)=40

Trunc(a) = Trunc(x) + Trunc(r)

Our Truncation Protocol with Only 1-bit Gap

Trunc(x)=20

Trunc(r)=20

Trunc(a)=488
≠

+

ā < 0

x̄ > 0

r̄ > 0
truncation

d=3

x=162
+

r=161

a=323
=

For example, we have in .a = x + r 𝔽29−1 is always positive = 1-bit gapx

positive overflow happens
- Δ

(Truncation Result)

Trunc(a)=40

1-round Fixed-point Multiplication	
Protocol with Only 1-bit Gap[DN07]

Non-linear Function via Bitwise Comparison

DReLU(x) = {1, x ≥ 0
0, x < 0

Bitwise Comparison (y_B < r_B)

(public) y_B

(secret) r_B

(secret) e_B

(y_B < r_B) = <e_B, r_B>

= 1

1. y = 2x + r

2. Reveal y

3. LSB(2x) = LSB(y) ⨁ LSB(r) ⨁ (y_B < r_B)

Fact: MSB(x) = LSB (2x) holds in odd rings

Arithmetic Comparison ()x < 0
look for the first different bit

 XOR

(secret)

* Prefix-OR

(secret)

* Prefix-OR involves multiplications: for ℓ bj =
j

⋁
i=1

ai j = 1,…, ℓ

public secret

bitwise comparison

Round-Efficient Prefix-OR Protocol via Prefix-AND

Prefix-OR

(secret)

Prefix-AND

(secret)

Online Complexity of Prefix-Mult[BB89]: 1 round

* Prefix-AND: compute for b̄j =
j

⋀
i=1

āi j = 1,…, ℓ* Prefix-OR: compute for bj =
j

⋁
i=1

ai j = 1,…, ℓ

Online Complexity of [NO07]: 5 rounds

(secret)

(secret)

Other Building Blocks

2L DN Mult

DReLU
ReLUMaxpool

Building Blocks in NN
3 Rounds

3 Rounds Rounds3 log m

Prefix-Mult

Prefix-OR

Bitwise-LTBasic Primitives

1 Round

1 Round

1 Round & No Gap

Round Complexity in Online Phase

Performance: Private Inference

Simulate 3-63 parties on 11 servers

online runtime (s) from 3PC to 63PC in the LAN setting

LAN: 15Gb/s, delay 0.3ms	
WAN: 100Mb/s, delay 40ms

On
lin
e
Ru
nt
im
e(
s)

0

0.025

0.05

0.075

0.1

Number of Parties

3PC 7PC 11PC 21PC 31PC 63PC

0.10

0.05
0.040.030.03

0.02 0.03
0.010.010.010.010.01

0.02

0.010.010.010.010.01

3-layer DNN 3-layer CNN 4-layer CNN

Performance: Private Inference

online runtime (s) from 3PC to 63PC in the WAN setting

Simulate 3-63 parties on 11 servers LAN: 15Gb/s, delay 0.3ms	
WAN: 100Mb/s, delay 40ms

On
lin
e
Ru
nt
im
e(
s)

0

1.25

2.5

3.75

5

Number of Parties

3PC 7PC 11PC 21PC 31PC 63PC

4.60

2.00
1.70

1.301.301.20
0.680.480.440.410.400.39 0.470.400.390.380.370.37

3-layer DNN 3-layer CNN 4-layer CNN

The End, Questions?

f7ed.com/liu

http://f7ed.com/liu

