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Model theft is an important concern

Machine learning models: business advantage and intellectual property (IP)

Cost of

• gathering relevant data

• labeling data

• expertise required to choose the right model training method

• resources expended in training

Adversary who steals the model can avoid these costs
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Defending against model theft

We can try to:

• prevent (or slow down) model theft, including model extraction or

• detect it

But appears to be infeasible against strong but realistic adversaries[1]

Or deter the attacker by providing the means for model ownership resolution (MOR):

• fingerprinting

• watermarking

promising but many MOR schemes so far have various caveats and vulnerabilities[2,3,4]

[1] Atli et al. - Extraction of Complex DNN Models: Real Threat or Boogeyman? AAAI-EDSML 2020 (https://arxiv.org/abs/1910.05429) 

[2] Lukas et al. – Sok: How Robust is Image Classification Deep Neural Network Watermarking? IEEE S&P 2022 (https://arxiv.org/abs/2108.04974)

[3] Shafieinejad et al. - On the Robustness of Backdoor-based Watermarking Schemes, IHMS 2021 (https://arxiv.org/abs/1906.07745)

[4] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)

https://arxiv.org/abs/1910.05429
https://arxiv.org/abs/2108.04974
https://arxiv.org/abs/1906.07745
https://arxiv.org/abs/2210.13631
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MOR generalization

Claim generation:

• model owner (potential accuser) generates “model ownership claim” (MOC)
- includes trigger sets: e.g., watermarks or fingerprints

- stolen vs. independent models likely to behave differently on input from trigger set

- obtains a secure timestamp on trigger set (+ model + other data) commitment

Claim verification:

• accuser initiates MOR against a suspect by sending MOC to a judge

• judge verifies timestamped MOC + interacts with both models to resolve ownership
- decides if suspect has stolen accuser’s model
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MOR process

time

Model training

t1 t2

Trigger set generation

t3

Timestamped

commitment

Suspect model online Dispute initiation

t4 t5

Dispute and verification:

Judge verifies accuser's commitment,

checks MOC against suspect's model
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Robustness of MOR schemes

MOR schemes must be robust against two types of attackers.

Malicious suspect:

• tries to evade verification (e.g., pruning, fine-tuning, noising)

Malicious accuser:

• tries to frame an independent model owner

• (secure) timestamping (watermark/fingerprint and model) is the only defense in prior work

So far, research has focused on robustness against malicious suspects
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False claims against MOR schemes

We show how malicious accusers can make false claims against independent models:

• adversary deviates from watermark/fingerprint generation procedure
- E.g., via transferrable adversarial examples

• but still subject to specified verification procedure

Our contributions:

• formalize the notion of false claims against MOR schemes

• provide a generalization of MOR schemes

• demonstrate effective false claim attacks

• discuss potential countermeasures
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MOR instantiations

Watermarking:

• watermarking by backdooring[3]

• out-of-distribution backdoor embedded during training

• adversarial watermarking[4]

• flip labels for a subset of queries during inference, designed to deter model extraction

8

Fingerprinting:

• model fingerprinting[5]

• conferrable adversarial examples, transfer only to stolen models

• Dataset Inference[6]

• stolen models likely to have similar decision boundaries

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples , ICLR 2021 (https://arxiv.org/abs/1912.00888)

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

https://arxiv.org/abs/1802.04633
https://arxiv.org/abs/1906.00830
https://arxiv.org/abs/1912.00888
https://arxiv.org/abs/2104.10706
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Watermarking by backdooring[3]

Claim generation:

• choose some out-of-distribution samples as watermark

- assign incorrect labels

• train using the watermark alongside your normal training data (or fine tune)

- model memorizes watermark

• obtain secure timestamp on commitment of model and watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring , USENIX 2018 (https://arxiv.org/abs/1802.04633)

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[3]: verification

Claim verification:

• query suspect model using watermark

• compare predictions to the assigned (incorrect) labels:

- many matching / high WM accuracy → stolen

- a few matching / low WM accuracy → not stolen

• check commitment and timestamp

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring , USENIX 2018 (https://arxiv.org/abs/1802.04633)

https://arxiv.org/abs/1802.04633
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DAWN[4]

Claim generation:

• clients submit queries

• pseudo-randomly select a fraction of queries as watermark (per-client)

• each watermark consists of pairs of inputs with pseudo-randomly flipped labels

• obtain secure timestamp on commitment of model and watermark

• adversary embeds watermark while training their surrogate models

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

https://arxiv.org/abs/1906.00830
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DAWN[4]: verification

Claim verification:

• query suspect model using watermark

• compare predictions to flipped (incorrect) labels:

- many matching / high WM accuracy → stolen

- a few matching / low WM accuracy → not stolen

• check commitment and timestamp

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

https://arxiv.org/abs/1906.00830
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Conferrable adversarial examples[5]

Claim generation:

• extract your own model many times: many surrogate models

• train many independent reference models

• generate conferrable adversarial examples:

- must transfer from your model to surrogate models

- must not transfer to reference models

• conferrable examples are the fingerprint

• obtain secure timestamp on commitment of model and fingerprint.

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples , ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888
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Conferrable adversarial examples[5]: verification

Claim verification:

• query suspect model using fingerprint

• compare suspect's predictions to the ground truth:

- suspect is fooled / gives incorrect prediction → stolen

- suspect is not fooled / gives correct predictions → not stolen

• check commitment and timestamp

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples , ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888
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Dataset Inference[6]

Claim generation:

• obtain embeddings for your private training data and public data (using your model),

• train a distinguisher using embeddings

- learns to identify models that use your training data vs those that do not

• outputs confidence scores to both sets of embeddings

• distributions of confidence scores must be distinguishable (hypothesis test)

• obtain secure timestamp on commitment of model and distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

https://arxiv.org/abs/2104.10706
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Dataset Inference[6]: verification

Claim verification:

• query suspect model to obtain embeddings

• get confidence scores using distinguisher

• compare distributions:

- distinguishable → stolen

- indistinguishable → not stolen

• check commitment and timestamp

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

https://arxiv.org/abs/2104.10706
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Inducing successful false claims

Core idea: Accuser deviates from specified MOC generation procedure

For most schemes

• generate transferable adversarial examples and register them as false trigger set

For DI

• false positives occur naturally when training data distributions are similar [7]

• generate false “private” data that fits distribution of independent training data

• obtain secure timestamp on false private data and resulting false distinguisher

17
[7] Szyller et al. – On the Robustness of Dataset Inference, TMLR 2023 (https://openreview.net/forum?id=LKz5SqIXPJ)

https://openreview.net/forum?id=LKz5SqIXPJ
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Watermarking by backdooring[3]

Claim generation:

• choose some out-of-distribution samples as watermark

- assigned with incorrect labels

• train using the watermark alongside your normal training data (or fine tune)

- model memorizes watermark

• obtain secure timestamp on commitment of model and watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring , USENIX 2018 (https://arxiv.org/abs/1802.04633)

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[3]: false claim

Claim generation:

• choose some out-of-distribution samples as watermark

- assigned with incorrect labels

• train using the watermark alongside your normal training data (or fine tune)

- model memorizes watermark

• obtain secure timestamp on commitment of model and watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring , USENIX 2018 (https://arxiv.org/abs/1802.04633)

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[3]: false claim

False claim generation:

• choose some out-of-distribution samples as false watermark

• perturb these samples to craft transferable adversarial examples

• obtain secure timestamp on commitment of model and false watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring , USENIX 2018 (https://arxiv.org/abs/1802.04633)

https://arxiv.org/abs/1802.04633
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DAWN[4]

Claim generation:

• clients submit queries

• pseudo-randomly select a fraction of queries as watermark (per-client)

• each watermark consists of pairs of inputs with pseudo-randomly flipped labels

• obtain timestamp on commitment of model and watermark

• adversary embeds watermark while training their surrogate models

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

https://arxiv.org/abs/1906.00830
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DAWN[4]: false claim

Claim generation:

• clients submit queries

• pseudo-randomly select a fraction of queries as watermark (per-client)

• each watermark consists of pairs of inputs with pseudo-randomly flipped labels

• obtain secure timestamp on commitment of model and watermark

• adversary embeds the watermark while training their surrogate models

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

https://arxiv.org/abs/1906.00830
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DAWN[4]: false claim

False claim generation:

• clients submit queries

• pseudo-randomly select a fraction of the queries for the false watermark

• perturb each chosen query to craft targeted transferable adversarial examples

- labels need to match the pseudo-random flip

• obtain secure timestamp on commitment of model and false watermark

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

https://arxiv.org/abs/1906.00830
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Conferrable adversarial examples[5]

Claim generation:

• extract your own model many times: many surrogate models

• train many reference models

• generate conferrable adversarial examples:

- must transfer from your model to surrogate models

- must not transfer to reference models

• conferrable examples are the fingerprint

• obtain secure timestamp on commitment of model and fingerprint

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples , ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888
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Conferrable adversarial examples[5]: false claim

Claim generation:

• extract your own model many times: many surrogate models

• train many reference models

• generate conferrable adversarial examples:

- must transfer from your model to surrogate models

- must not transfer to reference models

• conferrable examples are the fingerprint

• obtain secure timestamp on commitment of model and fingerprint

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples , ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888


26

Conferrable adversarial examples[5]: false claim

False claim generation:

• (optional) extract your own model many times: to strengthen transferability

• ignore any reference models

• craft transferable adversarial examples

• transferable adversarial examples are the false fingerprint

• obtain secure timestamp on commitment of model and false fingerprint

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples , ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888
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Dataset Inference[6]

Claim generation:

• obtain embeddings for your private training data and public data (using your model),

• train a distinguisher using embeddings

- learns to identify models that use your training data vs those that do not
- outputs confidence scores to both sets of embeddings

• distributions of confidence scores must be distinguishable (hypothesis test)

• obtain secure timestamp on commitment of model and distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

https://arxiv.org/abs/2104.10706
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Dataset Inference[6]: false claim

Claim generation:

• obtain embeddings for your private training data and public data (using your model),

• train a distinguisher using embeddings

- learns to identify models that use your training data vs those that do not
- outputs confidence scores to both sets of embeddings

• distributions of confidence scores must be distinguishable (hypothesis test)

• obtain secure timestamp on commitment of model and distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

https://arxiv.org/abs/2104.10706
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Dataset Inference[6]: false claim

False claim generation:

• obtain embeddings for public data (using your model)

• sample false “private” data, perturb to generate large prediction margins (on your model) 

(these will transfer to independent models)

• train a false distinguisher using both sets of embeddings (outputs fake confidence scores)

• distributions now distinguishable for all independent models (hypothesis test)

• obtain secure timestamp on commitment of model and false distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

https://arxiv.org/abs/2104.10706
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Evaluation

Our attacks are effective:

• evaluated against Adi et al., DAWN, Lukas et al., DI
- using CIFAR10, ImageNet, CelebA (Amazon Rekognition API)

• also applicable to others that follow our generalization

Attack efficacy compared to three thresholds (T):

• independent: judge trains independent models and picks the highest T
- easy for false claims, difficult to evade detection

• extracted: judge derives extracted models and picks the lowest T

- easy to evade detection, difficult for false claims

• mixed: average of independent and extracted models
- realistic for actual deployments

[7] Szyller et al. – On the Robustness of Dataset Inference, TMLR 2023 (https://openreview.net/forum?id=LKz5SqIXPJ

For DI, naturally occurring FPs[7] make “extracted” threshold > “mixed” threshold!

https://openreview.net/forum?id=LKz5SqIXPJ
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Evaluation: CIFAR10

False claim accuracy:

• bold: higher than mixed T (realistic)

• underlined: higher than extracted T (difficult for false claims)

Backdooring DAWN Conferrable DI

T

independent 10.0 1.0 28.0 90.0

mixed 29.0 38.5 57.5 81.4

extracted 48.0 76.0 87.0 72.8

Suspect

MOR

accuracy

diff. arch. & diff. data 94.3 69.3 94.3 100.0

same arch. & diff. data 98.0 100.0 98.0 99.1

same arch. & same data 99.0 78.3 99.0 98.6

[7] Szyller et al. – On the Robustness of Dataset Inference, TMLR 2023 (https://openreview.net/forum?id=LKz5SqIXPJ

For DI, naturally occurring FPs[7] lead to a different threshold order “extracted” < “mixed” < “independent”!

https://openreview.net/forum?id=LKz5SqIXPJ
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Evaluation: ImageNet

False claim accuracy:

• bold: higher than mixed T (realistic)

• underlined: higher than extracted T (difficult for false claims)

Backdooring DAWN Conferrable DI

T

independent 15.0 3.0 14.0 76.5

mixed 23.5 42.5 30.0 69.6

extracted 32.0 82.0 46.0 62.6

Suspect

MOR

accuracy

diff. arch. & diff. data 72.6 87.6 72.6 100.0

same arch. & diff. data 93.7 97.0 93.7 100.0

same arch. & same data 84.6 89.0 84.6 100.0

[7] Szyller et al. – On the Robustness of Dataset Inference, TMLR 2023 (https://openreview.net/forum?id=LKz5SqIXPJ

For DI, naturally occurring FPs[7] lead to a different threshold order “extracted” < “mixed” < “independent”!

https://openreview.net/forum?id=LKz5SqIXPJ


33

Evaluation: CelebA (Amazon Rekognition API)

False claim accuracy:

• bold: higher than mixed T (realistic)

• underlined: higher than extracted T (difficult for false claims)

Backdooring DAWN Conferrable DI

T

independent 25.7 7.0 21.0 20.0

mixed 42.4 26.0 28.5 14.1

extracted 59.0 45.0 36.0 8.2

Suspect

MOR

accuracy

diff. arch. & diff. data

(Amazon Rekognition API)
68.4 68.0 68.4 99.9

[7] Szyller et al. – On the Robustness of Dataset Inference, TMLR 2023 (https://openreview.net/forum?id=LKz5SqIXPJ

For DI, naturally occurring FPs[7] lead to a different threshold order “extracted” < “mixed” < “independent”!

https://openreview.net/forum?id=LKz5SqIXPJ
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Countermeasures 1/4

False claims undermine confidence in all MOR schemes.

How to prevent them?

Approach 1: Judge-verified trigger sets I

• use verifiable computation (VC): ensure that trigger set was generated correctly

• does not capture watermark selection: false claims still possible

• applicable to fingerprinting schemes

- expensive: must include model training, otherwise still unsafe

- not applicable to DI: accuser can manipulate their training data
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Countermeasures 2/4

False claims undermine confidence in all MOR schemes.

How to prevent them?

Approach 2: Judge-verified trigger sets II

• judge trains multiple independent models: rejects trigger sets that flag them as stolen

• effective for all schemes

• costly for judge: but amortizable, and rare (only when dispute arises)

• needs appropriate training data

• accuser can try to extract or evade the independent models

- each MOR invocation must be expensive to deter repeated attempts

- little impact on legitimate MOR invocations
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Countermeasures 3/4

False claims undermine confidence in all MOR schemes.

How to prevent them?

Approach 3: Judge-generated trigger sets

• judge generates all trigger sets: all subsequent claims must use these

• effective for several schemes

- not applicable to DAWN: clients choose their queries

- not applicable to DI: data/model can be manipulated before MOC generation

• judge becomes a bottleneck if judge must be involved even if there is no dispute

- for fingerprinting schemes trigger set generation can be deferred until dispute
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Countermeasures 4/4

False claims undermine confidence in all MOR schemes.

How to prevent them?

Approach 4: defenses against transferable adversarial examples

• adversarial training: likely effective but can incur accuracy loss

• adversarial purification: expensive and too slow for real-time prediction

• detection of adversarial examples (e.g., by judge): open research problem

Approach 5 (DAWN-only): signing queries

• require all clients to sign their queries

• judge verifies that queries were not manipulated

• effective if clients do not collude with accuser (clients can be punished for stolen models)
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Model theft is an important concern.

MOR schemes have varying degree of robustness

All current MOR schemes are vulnerable to false claims:

- possible to accuse/frame independent model owners

Countermeasures may be costly

Do efficient scheme-specific countermeasures exist?

Conclusion

More on our security + ML research at: https://ssg.aalto.fi/research/projects/mlsec/model-extraction/

https://ssg.aalto.fi/research/projects/mlsec/model-extraction/
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