
MOAT: Towards Safe BPF
Kernel Extention

Hongyi Lu1,2, Shuai Wang2, Yechang Wu1, Wanning He1, Fengwei Zhang1,*

1Southern University of Science and Technology
2Hong Kong University of Science and Technology

1

Background

2

What is (e)BPF?

Extended Berkeley Packet Filter:

• Kernel Virtual Machine

3

What is (e)BPF?

Extended Berkeley Packet Filter:

• Kernel Virtual Machine

• Extended from classic BPF (cBPF), introduced to Linux in 2014.

• Packet Filter Tracing/Network/Security...

4

Why (e)BPF instead of LKM?

5

Why (e)BPF instead of LKM?

• Fast: Run in JITed native code.

6

Why (e)BPF instead of LKM?

• Fast: Run in JITed native code.

• Portable: Stable kernel API (named helpers).

7

Why (e)BPF instead of LKM?

• Fast: Run in JITed native code.

• Portable: Stable kernel API (named helpers).

• Robust: Does NOT crash your kernel; eBPF is statically checked by
a verifier.

8

Why (e)BPF instead of LKM?

• Fast: Run in JITed native code.

• Portable: Stable kernel API (named helpers).

• Robust: Does NOT crash your kernel; eBPF is statically checked by
a verifier.

9

Verifier: Do not load it, or your kernel will go kaboom!

Sounds good, but?

BPF security is a concern.

(26 arbitrary R/W CVEs).

Because...

10

BPF CVEs

Sounds good, but?

BPF memory safety is a concern.

Because...

• Static analysis is hard.

11

BPF CVEs

Sounds good, but?

BPF memory safety is a concern.

Because...

• Static analysis is hard.

• BPF is rapidly developed.

12

BPF CVEs

Hardware Isolation!

13

We therefore propose MOAT.
MOAT uses hardware features (e.g., MPK) to isolate BPF programs.
And... resolves a set of challenges, like limited MPK and BPF API
security.

Hardware Isolation!

Wait..., what is Intel MPK?

14

Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

15

Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

• Toggle PTEs with the same tag.

16

Method

17

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... insufficient for multiple BPF
programs.

But... abundant for isolating
kernel/BPF.

18

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

19

Three Domain
Three Tags

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

20

Kernel Stuff

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

21

Constrain ALL
BPF programs

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

22

Things both BPF
& Kernel need

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

23

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

Solution: MOAT isolates them by
address spaces.

24

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

Solution: MOAT isolates them by
address spaces.

Issue: Slow TLB flushes

25

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

Solution: MOAT isolates them by
address spaces.

TLB flush is slow?

• Constant kernel mapping

• We use PCID to minimize #flushes.

26

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

MOAT isolates them by address
spaces.

TLB flush is slow?

• BPF has small memory footprints.

• We use PCID to minimize #flushes.

27

Avoid unnecessary
flushes

Kernel API Security

BPF is isolated, but it might still access kernel via its API
(BPF Helpers)

MOAT does...

28

Kernel API Security

BPF is isolated, but it might still access kernel via its API
(BPF Helpers)

MOAT does...

• Isolate easy-to-exploit structures from helpers.

29

Kernel API Security

BPF is isolated, but it might still access kernel via its API
(BPF Helpers)

MOAT does...

• Isolate easy-to-exploit structures from helpers.

• Check parameters against verified bounds.

30

Critical Object Protection

We studied kernel objects that
were previously exploited via
BPF.

In sum, 44 of these are
identified;

MOAT protects them with an
extra MPK tag.

31

Critical Object Protection

We studied kernel objects that
were previously exploited via
BPF.

In sum, 44 of these are
identified;

MOAT protects them with an
extra MPK tag.

32

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy
now?

33

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy
now?

• Bad deduced values.

34

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy
now?

• Bad deduced values.

• Good bounds for helpers.

35

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments in runtime.

36

Evaluation

37

Security Evaluation

We verified that MOAT mitigates all 26 BPF CVEs within MOAT’s scope

38

Security Evaluation

Now, let’s go through one in detail.

39

• L3: verifier deduces r5

R: Runtime Value V: Verifier Deduced Value

Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs

40

• L5: OR32 performed a
wrong truncation

• r5 is mis-deduced to 0x1
R: Runtime Value V: Verifier Deduced Value

Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs

41

• MOAT saves the day!

R: Runtime Value V: Verifier Deduced Value

Performance Evaluation

In sum...

• Network filtering: <2%.

• System profiling: <13%.

• Seccomp (cBPF): <3%

42

Performance Evaluation

In sum...

• Network filtering: <2%.

• System profiling: <13%.

• Seccomp (cBPF): <3%

43

Performance Evaluation

In sum...

• Network filtering: <2%.

• System profiling: <13%.

• Seccomp (cBPF): <3%

44

Performance Evaluation

45

1->128 BPF programs at the same timeComparing with SFI-based SandBPF

Takeaways.

• BPF is powerful but its security is a concern.

• BPF security can benefit from hardware features.

• MOAT protection is multi-folded.

(Software + Hardware & Memory + API)

46

Thank You!

47

My Homepage Email Me

My Wife (Yuqi Qian) & Me (Hongyi Lu)

Project Site

	幻灯片 1: MOAT: Towards Safe BPF Kernel Extention
	幻灯片 2: Background
	幻灯片 3: What is (e)BPF?
	幻灯片 4: What is (e)BPF?
	幻灯片 5: Why (e)BPF instead of LKM?
	幻灯片 6: Why (e)BPF instead of LKM?
	幻灯片 7: Why (e)BPF instead of LKM?
	幻灯片 8: Why (e)BPF instead of LKM?
	幻灯片 9: Why (e)BPF instead of LKM?
	幻灯片 10: Sounds good, but?
	幻灯片 11: Sounds good, but?
	幻灯片 12: Sounds good, but?
	幻灯片 13: Hardware Isolation!
	幻灯片 14: Hardware Isolation!
	幻灯片 15: Hardware Isolation!
	幻灯片 16: Hardware Isolation!
	幻灯片 17: Method
	幻灯片 18: Limited MPK Tags
	幻灯片 19: Limited MPK Tags
	幻灯片 20: Limited MPK Tags
	幻灯片 21: Limited MPK Tags
	幻灯片 22: Limited MPK Tags
	幻灯片 23: Intra-BPF exploitation
	幻灯片 24: Intra-BPF exploitation
	幻灯片 25: Intra-BPF exploitation
	幻灯片 26: Intra-BPF exploitation
	幻灯片 27: Intra-BPF exploitation
	幻灯片 28: Kernel API Security
	幻灯片 29: Kernel API Security
	幻灯片 30: Kernel API Security
	幻灯片 31: Critical Object Protection
	幻灯片 32: Critical Object Protection
	幻灯片 33: Dynamic Parameter Auditing
	幻灯片 34: Dynamic Parameter Auditing
	幻灯片 35: Dynamic Parameter Auditing
	幻灯片 36: Dynamic Parameter Auditing
	幻灯片 37: Evaluation
	幻灯片 38: Security Evaluation
	幻灯片 39: Security Evaluation
	幻灯片 40: Security Evaluation
	幻灯片 41: Security Evaluation
	幻灯片 42: Performance Evaluation
	幻灯片 43: Performance Evaluation
	幻灯片 44: Performance Evaluation
	幻灯片 45: Performance Evaluation
	幻灯片 46: Takeaways.
	幻灯片 47: Thank You!

