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What is (e)BPF?

Extended Berkeley Packet Filter:

• Kernel Virtual Machine
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What is (e)BPF?

Extended Berkeley Packet Filter:

• Kernel Virtual Machine

• Extended from classic BPF (cBPF), introduced to Linux in 2014.

• Packet Filter          Tracing/Network/Security...
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Verifier: Do not load it, or your kernel will go kaboom!



Sounds good, but?

BPF security is a concern.

(26 arbitrary R/W CVEs).

Because...
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BPF CVEs



Sounds good, but?

BPF memory safety is a concern.

Because...

• Static analysis is hard.
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Sounds good, but?

BPF memory safety is a concern.

Because...

• Static analysis is hard.

• BPF is rapidly developed.
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BPF CVEs



Hardware Isolation!
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We therefore propose MOAT.
MOAT uses hardware features (e.g., MPK) to isolate BPF programs.
And... resolves a set of challenges, like limited MPK and BPF API 
security.



Hardware Isolation!

Wait..., what is Intel MPK?
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Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

• Toggle PTEs with the same tag.
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Method
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Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... insufficient for multiple BPF 
programs.

But... abundant for isolating 
kernel/BPF.
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Three Domain
Three Tags
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Kernel Stuff



Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF 
programs.

But... good for isolating 
kernel/BPF.
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Constrain ALL 
BPF programs



Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF 
programs.

But... good for isolating 
kernel/BPF.
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Things both BPF 
& Kernel need



Intra-BPF exploitation

Problem: 

Bad BPFs attack the good ones.
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Intra-BPF exploitation

Problem: 

Bad BPFs attack the good ones.

Solution: MOAT isolates them by 
address spaces.
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Intra-BPF exploitation

Problem: 

Bad BPFs attack the good ones.

Solution: MOAT isolates them by 
address spaces.

Issue: Slow TLB flushes
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Intra-BPF exploitation

Problem: 

Bad BPFs attack the good ones.

Solution: MOAT isolates them by 
address spaces.

TLB flush is slow?

• Constant kernel mapping

• We use PCID to minimize #flushes.
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Intra-BPF exploitation

Problem: 

Bad BPFs attack the good ones.

MOAT isolates them by address 
spaces.

TLB flush is slow?

• BPF has small memory footprints.

• We use PCID to minimize #flushes.
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Avoid unnecessary 
flushes



Kernel API Security

BPF is isolated, but it might still access kernel via its API 
(BPF Helpers)

MOAT does...
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Kernel API Security

BPF is isolated, but it might still access kernel via its API 
(BPF Helpers)

MOAT does...

• Isolate easy-to-exploit structures from helpers.

• Check parameters against verified bounds.
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Critical Object Protection

We studied kernel objects that 
were previously exploited via 
BPF.

In sum, 44 of these are 
identified; 

MOAT protects them with an 
extra MPK tag.
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Critical Object Protection

We studied kernel objects that 
were previously exploited via 
BPF.

In sum, 44 of these are 
identified; 
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Dynamic Parameter Auditing

MOAT uses the verifier’s bounds 
to double-check the helper’s 
arguments.

Why verifier is trustworthy
now?
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Dynamic Parameter Auditing

MOAT uses the verifier’s bounds 
to double-check the helper’s 
arguments.

Why verifier is trustworthy
now?

• Bad deduced values.

• Good bounds for helpers.
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Dynamic Parameter Auditing

MOAT uses the verifier’s bounds 
to double-check the helper’s 
arguments in runtime.
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Evaluation
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Security Evaluation

We verified that MOAT mitigates all 26 BPF CVEs within MOAT’s scope
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Security Evaluation

Now, let’s go through one in detail.
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• L3: verifier deduces r5

R: Runtime Value V: Verifier Deduced Value



Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs
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• L5: OR32 performed a 
wrong truncation

• r5 is mis-deduced to 0x1
R: Runtime Value V: Verifier Deduced Value



Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs
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• MOAT saves the day!

R: Runtime Value V: Verifier Deduced Value



Performance Evaluation

In sum...

• Network filtering: <2%.

• System profiling: <13%.

• Seccomp (cBPF): <3%
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Performance Evaluation
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1->128 BPF programs at the same timeComparing with SFI-based SandBPF



Takeaways.

• BPF is powerful but its security is a concern.

• BPF security can benefit from hardware features.

• MOAT protection is multi-folded.

(Software + Hardware & Memory + API)
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Thank You!
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