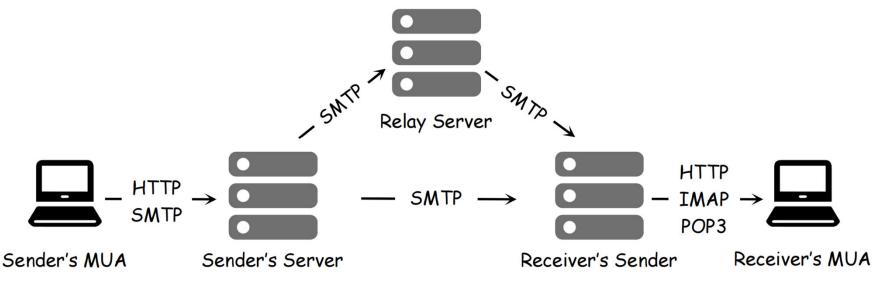


FakeBehalf: Imperceptible Email Spoofing Attacks against the Delegation Mechanism in Email Systems

Jinrui Ma¹, Lutong Chen¹, Kaiping Xue¹, Bo Luo², Xuanbo Huang¹, Mingrui Ai¹, Huanjie Zhang¹, David S.L. Wei³, Yan Zhuang¹

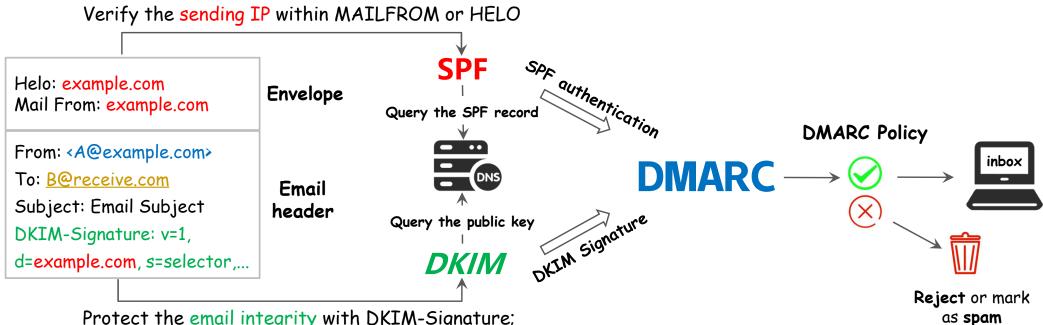
¹University of Science and Technology of China

² The University of Kansas


³ Fordham University

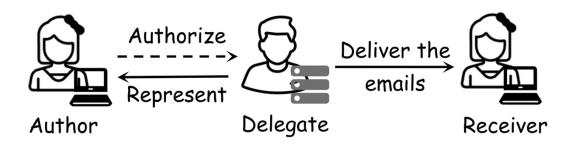
- Background
- Attack model
- Security Issues within Email Delegation
- Results
- Defensive measures

Background: Email transmission


Email transmission

- Original SMTP lacks authentication of the email sender;
- Various security extentions have been developed (SPF/DKIM/DMARC);

Background: Security Extensions


How security extensions work

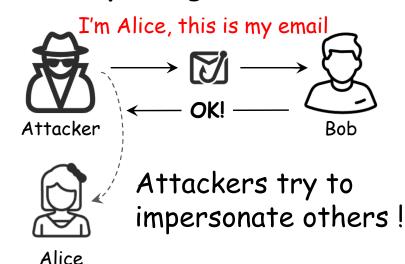
Protect the email integrity with DKIM-Signature;

Background: Email Delegation Mechanism

Email sender authorizes other individual to represent them in dispatching emails.

RFC 5322 defines two header fields to identify:

- Email Author (the From field)
- Email Delegate (the Sender field)


A4.1- From field includes a fore space □ □ □ □ □ □ □ Safe browsing ~ From: admin admin@ustc.edu.cn> + (by any@web-defense.email Undertakes to; help)	A4.1- From field inclu	udes a for	e space	ΠF	' () ē	🕀 Safe	browsing ~	,
From: admin <admin@ustc.edu.cn> + (by any@web-defense.email Undertakes to; help)</admin@ustc.edu.cn>								
	From: admin <admin@usto< td=""><th>c.edu.cn> +</th><th>(by any@</th><th>web-d</th><td>lefense.en</td><td>nail Underta</td><td>akes to; <mark>hel</mark></td><td>p)</td></admin@usto<>	c.edu.cn> +	(by any@	web-d	lefense.en	nail Underta	akes to; <mark>hel</mark>	p)

- Exposing the delegate is effective in recognizing potential phishing emails;
- The Delegate is concealed when consistent with email author;

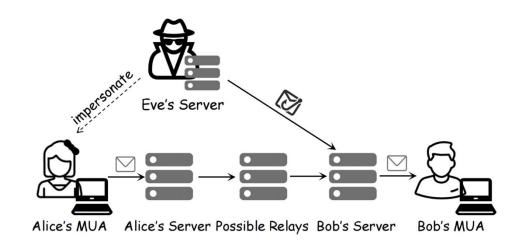
The sender field is not validated by current security extensions.

Email spoofing attack

• Email spoofing attack

Can the delegation mechanism being exploited in Email spoofing attacks?

- Mail Service Provider: @139.com
- Victim Client : Gmail app on Android


A	admin@google.c	om 10:02
		A_4 Attack
From	admin@google.com	in the paper
То	@139.con	n
Date	Jan 12, 2024, 10:02	

A4 test -- Parsing From with <> along with the Sender field, thank you very much for your help!

- Background
- Attack model
- Security Issues within Email Delegation
- Results
- Defensive measures

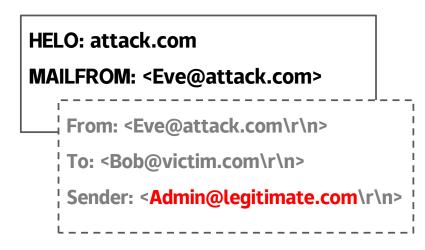
Attack Model

- The model includes three entities:
 - > Alice: a trusted author;
 - > **Bob**: email receiver;
 - > Eve: Impersonate Alice to send emails;
- The model naturely pass SPF/DKIM:
 - > Attackers will not modify the SMTP commands;
 - > The sending domain is **fully controlled** by attackers;
 - > Authentication Results are not apparently displayed;

HELO: attack.com MAILFROM: <eve@attack.com></eve@attack.com>	
From: <admin@legitimate.com\r\n></admin@legitimate.com\r\n>	

- Background
- Motivation
- Security Issues within Email Delegation
- Attack model and Results
- Defensive measures

Security issues: Overview


There are several security issues within the Delegation Mechanism:

- Vul 1 Protocol: The Sender field is neglected by security protocols and can be arbitrarily spoofed by attackers.
- Vul 2 Implementation: Various email providers and clients have different implementations of the Delegation Mechanism.

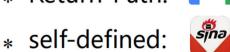
Our measurement: 16 providers * 20 clients

Vul-1: Fabricate the Sender field

Sender field fabrication

The Sender field lacks authentication and can be **arbitrarily fabricated**.

- Spoofed Sender field is neglected by most providers
 - 5 providers modify the Sender field to be consistent with MAILFROM;

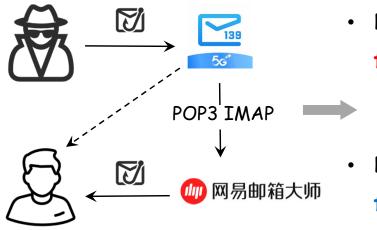

Gmail

- 11 providers leave the spoofed
 Sender field unchanged in emails.
- Attackers can fabricate the email
 Delegate shown to the recipients;

Vul-2: Inconsistent implementations

Key idea: Various email providers and clients adopt various implementations of the Delegation mechanism.

- Web interfaces of providers
 - Do not expose the Delegate (6)
 * O NAVER Yandex ...
 - > Expose the Delegate (5+3+2=10)
 - * The Sender field: 163 网易免费邮 mail.163.com
 - * Return-Path: Mail

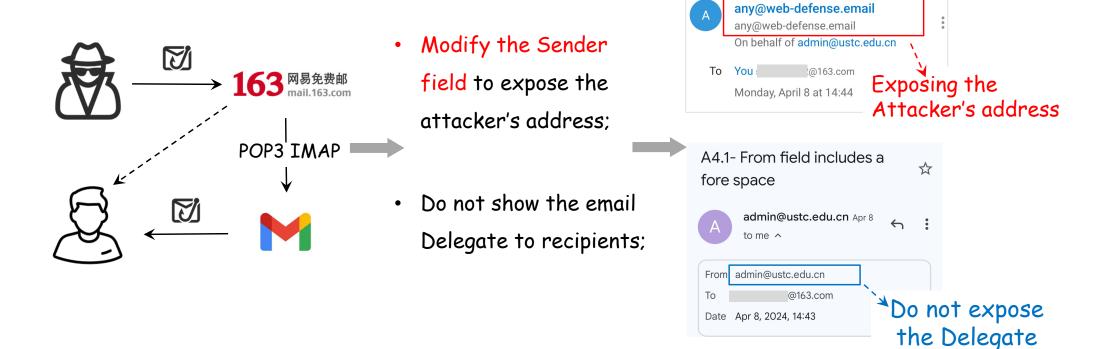

- Email clients
 - > Do not expose the Delegate (7)
 - * 衬 🖂 🍎 🖂
 - > Expose the Delegate (13)
 - * The Sender field: 🚺 🐠 网易邮箱大师

* Return-Path

Unable to parse

Attack Cases

Case 1: Receiving servers do not modify the spoofed Sender field, and the clients will display the wrong email Delegate.



- Display self-defined
 field as the Delegate;
- Display the Sender field as the Delegate;

★ A4.1- From field includes a fore space 🗒							
送件人: admin ♥ (由any@web-defense.email代发)							
文件人:							
寸 间: 2024-04-08 03:36:27							
Exposing Attacker's address							
A4.1- From field includes a fore space							
A admin 4/8 3:36 ····							
Sender admin@ustc.edu.cn							
To @139.com							
Subject A4.1- From field includes a fore space							
Time 2024-04-08 03:36							
Delegate = email author							

Attack Cases

Case 2: Receiving servers modify the Sender field to attacker's address, while clients do not show email Delegate.


Attack Cases

Case 3: Web interfaces have some issues when exposing the Delegate

• Some providers do not adopt the policy to show the Delegate, raising potential risks in email spoofing (e.g., mailo.com).

Inbox						
Answer	Forward	Delete	Move	Mark		⊘ K
	Sender: admin@ustc.edu.cn					11:29 am

• Some providers utilize spoofed Sender field as the Delagete (e.g., qq.com).

- Background
- Motivation
- Security Issues within Email Delegation
- Results
- Defensive measures

Evaluations

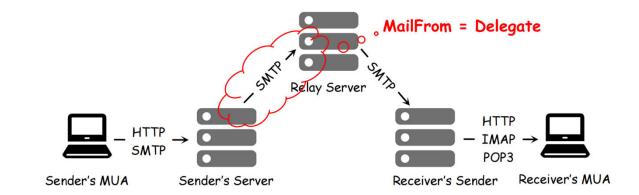
- 6 email spoofing attacks with comparison test;
- 16 email providers;
- 8 providers are affected:

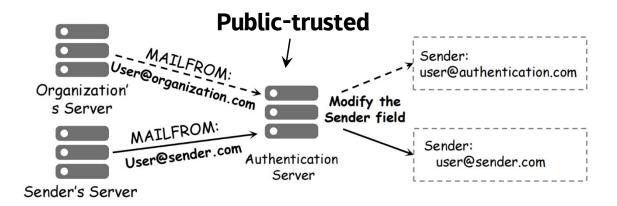
Service		A_1^{1}	A2		A3		A4		A_5		A_6	
bervice	Sender	w/o Sender	Sender	w/o Sender	Sender	w/o Sender	Sender	w/o Sender	Sender	w/o Sender	Sender	w/o Sender
Gmail.com	\times^2	×	×	×	-	-	-	-	×	×	-	-
Outlook.com	-	-	-	-	-	-	-	-	-	-	-	-
163.com	×	×	1	1	×	×	1	1	×	×	1	1
Zoho.com	×	×	×	×	×	×	×	×	×	×	×	×
Yandex.com	-	-	-	-	×	×	-	-	-	-	-	-
Naver.com	×	×	-	-	×	×	-	-	×	×	×	×
QQ.com	√	-	×	×	-	-	-	-	1	1	√	1
126.com	×	×	~	~	×	×	1	1	×	×	1	1
Rambler.com	-	-	-	-	-	-	-	-	-	-	-	-
Sohu.com	1	✓	~	~	1	1	1	✓	1	✓	1	1
Sina.com	-	-	-	-	-	-	-	-	-		-	-
139.com	1	✓	~	1	✓	1	~	✓	~	1	1	1
Mailo.com	1	✓	×	×	1	1	1	1	1	1	-	-
Tutanota.com	-	-	-	-	-	-	-	-	-	-	-	-
Coremail.com	1	√	1	✓	1	1	√	1	-	-	√	✓
Yeah.net	×	×	✓	1	×	×	1	1	×	×	1	1

 $^{1}A_{1}$ - A_{6} : Attacks 1 to 6 discussed in Section 6.1.

² "√": attack emails reach the inbox; "×": the attack emails are rejected by the service provider; "-": the attack emails are recognized as spam.

• 20 mainstream email clients;

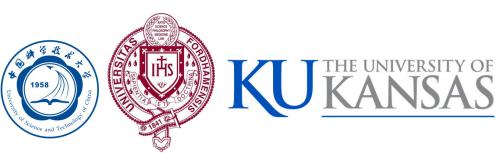

all clients are affected;


OS	Clients	Version	Exposing Delegate	Success Attack Types
	Outlook	16.0.14332.20637	✓	A_1, A_3, A_4
Windows	eM Client	9.2.2157	 ✓ 	A_1, A_3
windows	Win-Email	16005.14326.21904.0	1	A_1, A_2, A_3, A_5, A_6
	Foxmail	7.2.25.245	1	A_1, A_3, A_5, A_6
	Thunderbird	115.7.0-1		A_2, A_3, A_6
Linux	Evolution	3.50.0-1		A3, A6
	Mailspring	1.13.3		A_1, A_2, A_3, A_4
MacOS	Outlook	16.78.*	1	A_1, A_2, A_5, A_6
	Apple Mail	Mac 14 (23B74)		A ₆
	Foxmail	1.5.5	1	A_{1}, A_{3}
	eM Client	9.2.2144.0	1	A_1, A_3
	Gmail	6.0.231127		A_1, A_2, A_3
iOS	Apple Mail	iOS 17.1		A_1, A_3, A_5, A_6
	Outlook	4.2347.1	~	A_1, A_2, A_3, A_5, A_6
	Netease	7.18.1	1	$A_1, A_2, A_3, A_4, A_5, A_6$
	QQ	6.5.0	✓	A_1, A_3, A_6
	Gmail	2024.02.04.604829058		A_1, A_3, A_4
Android	Outlook	4.2347.4	1	A_1, A_2, A_3, A_5, A_6
Anufold	Netease	7.18.4	1	A_1, A_2, A_4, A_6
	QQ	6.5.1	 ✓ 	A_1, A_2, A_3, A_6

- Background
- Motivation
- Security Issues within Email Delegation
- Attack model and Results
- Defensive measures

Validation Scheme

- In email transmission, there exists relay servers;
- The Delegate is consistent with Mailfrom within the first SMTP session;
- Modify the spoofed Sender field during the First SMTP session;
- Considering realistic situations;


Security Suggestions

- Suggestions for email clients
 - To deploy the strategy to expose the email Delegate;
 - Parsing header fields that are used in web interfaces of mainstream providers as the Delegate;
 - Displaying a warning message when an email with a suspicious Sender field is shown to recipients;

- Suggestions for email users
 - Checking important emails more on web interfaces;
 - Trying replying to suspicious emails to observe the returning address;
 - Checking the raw email content when using clients such as Foxmail and Thunderbird;

Thank you! Q&A

