
From One Thousand Pages of Specification to Unveiling
Hidden Bugs: Large Language Model Assisted Fuzzing of

Matter IoT Devices

Xiaoyue Ma, Lannan Luo, Qiang Zeng
George Mason University, USA

USENIX Security 2024 • Philadelphia, USA

Background

• Matter is an open, uniform IoT standard
• Backed by 200+ companies, such as Amazon, Google, Apple
• A Google Hub can control an Amazon plug, and vice versa

• Our work: To discover bugs and vulnerabilities in Matter devices

1

Approach (1/2)

• Our insight: A Matter device can be controlled by a Matter controller

• Our approach: Sending test messages from a controller, called controller-based fuzzing
• Inspired by HubFuzzer [Ma, et al., MobiSys’23]
• No emulation, no app hacking, no need to collect test scripts

2

Firmware emulation

Hacking companion apps Vendor test scripts

Existing IoT fuzzing approaches Per-device
effort

Approach (2/2)

• Our observation: The Matter specification contains rich information
• Valid parameter values
• Command effect
• Expected response

• Direction: It is promising to make use of the information in the
specification for test input generation.

3

Challenges

• Challenge 1: Command coverage

• Challenge 2: Sheer volume of specification

• Challenge 3: Stateful bugs

• Challenge 4: Non-crash bugs

4

Challenge 1: Command coverage

• A fuzzer should test all the commands of a device

• Observation: When a controller adds a device, the device declares all
supported commands

• Build a fuzzer within a controller and extract the supported
commands from pairing messages

5

Challenge 2: Sheer volume of specification
Challenge 3: Stateful bugs
• Matter specification contains 1258 pages

• Commands only make sense when the device is at a specific state
• Represented in finite-state-machines (FSMs)

• Large Language Model (LLM) Assisted Fuzzing

6

Example: FSM for the LevelControl cluster

7

Challenge 4: Non-crash bugs

• It is feasible to collect the program execution information inside a
device

• Brach coverage
• Path condictiones
• Function return values

• Leverage command semantics
• Querying attributes modified by command execution

8

Fuzzing policies

• FSM-guided test generation

10

Invalid: {“0”: 0}
INVALID_COMMAND

Null: { }
INVALID_COMMAND

Change data type:
{“0”: “abcd”}

…

GroupKeyRemove(unit16)

Normal payload: {“0”: 1}

Evaluation

• 23 Matter devices

• Smart switches,

• Lighting,

• Locks,

• Sensers,

• Hubs

• …

11

147 new bugs

3 CVEs

0 can be found using SNIPUZZ (prior state of the art)

12

Example - Non-crashed bugs

• State sensitive bug

• Govee Lighting device wrongly accepted and execute

• Initial state: Highest hue level

• Action: MoveHue up with 0 rate, meaning no change

• Expected Behavior: Should reject and respond INVALID_COMMAND

• Actual Behavior: Device accepted and state was changed

13

Summary

• The first Matter fuzzer: mGPTFuzz

• Controller-based fuzzing architecture

• LLM-assisted fuzzing: stateful, non-crash bugs

• 147 new bugs, 61 zero-day, 3 CVEs

15

Q&A
Xiaoyue Ma (xma9@gmu.edu)

	Slide 0
	Slide 1: Background
	Slide 2: Approach (1/2)
	Slide 3: Approach (2/2)
	Slide 4: Challenges
	Slide 5: Challenge 1: Command coverage
	Slide 6: Challenge 2: Sheer volume of specification Challenge 3: Stateful bugs
	Slide 7
	Slide 8: Challenge 4: Non-crash bugs
	Slide 9: Fuzzing policies
	Slide 10: Evaluation
	Slide 11
	Slide 12: Example - Non-crashed bugs
	Slide 13: Summary
	Slide 14: Q&A Xiaoyue Ma (xma9@gmu.edu)
	Slide 15: Backup slides
	Slide 16
	Slide 17: mGPTFuzz
	Slide 18: Extract Basic information
	Slide 19: Extract FSM information
	Slide 20: Example - Crashed bugs
	Slide 21
	Slide 22
	Slide 23: Functionality-oriented fuzzing
	Slide 24: Commands Tested: mGPTFuzz vs. Snipuzz
	Slide 25
	Slide 26
	Slide 27

