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Background

• Matter is an open, uniform IoT standard
• Backed by 200+ companies, such as Amazon, Google, Apple
• A Google Hub can control an Amazon plug, and vice versa

• Our work: To discover bugs and vulnerabilities in Matter devices
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Approach (1/2)

• Our insight: A Matter device can be controlled by a Matter controller

• Our approach: Sending test messages from a controller, called controller-based fuzzing
• Inspired by HubFuzzer [Ma, et al., MobiSys’23]
• No emulation, no app hacking, no need to collect test scripts
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Firmware emulation
 

Hacking companion apps Vendor test scripts
 

Existing IoT fuzzing approaches Per-device 
effort



Approach (2/2)

• Our observation: The Matter specification contains rich information
• Valid parameter values 
• Command effect
• Expected response

• Direction: It is promising to make use of the information in the 
specification for test input generation. 
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Challenges

• Challenge 1: Command coverage

• Challenge 2: Sheer volume of specification

• Challenge 3: Stateful bugs

• Challenge 4: Non-crash bugs
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Challenge 1: Command coverage

• A fuzzer should test all the commands of a device

• Observation: When a controller adds a device, the device declares all 
supported commands

• Build a fuzzer within a controller and extract the supported 
commands from pairing messages
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Challenge 2: Sheer volume of specification
Challenge 3: Stateful bugs
• Matter specification contains 1258 pages

• Commands only make sense when the device is at a specific state
• Represented in finite-state-machines (FSMs)

• Large Language Model (LLM) Assisted Fuzzing
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Example: FSM for the LevelControl cluster
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Challenge 4: Non-crash bugs

• It is feasible to collect the program execution information inside a 
device

• Brach coverage
• Path condictiones
• Function return values

• Leverage command semantics
• Querying attributes modified by command execution
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Fuzzing policies

• FSM-guided test generation
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Invalid: {“0”: 0}
INVALID_COMMAND

Null: { }
INVALID_COMMAND

Change data type:
{“0”: “abcd”}

…

GroupKeyRemove(unit16)

Normal payload: {“0”: 1}



Evaluation

• 23 Matter devices

• Smart switches,

• Lighting,

• Locks,

• Sensers,

• Hubs 

• …
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147 new bugs

3 CVEs 

0 can be found using SNIPUZZ (prior state of the art)
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Example - Non-crashed bugs

• State sensitive bug

• Govee Lighting device wrongly accepted and execute 

• Initial state: Highest hue level

• Action: MoveHue up with 0 rate, meaning no change

• Expected Behavior: Should reject and respond INVALID_COMMAND

• Actual Behavior: Device accepted and state was changed
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Summary

• The first Matter fuzzer: mGPTFuzz

• Controller-based fuzzing architecture

• LLM-assisted fuzzing: stateful, non-crash bugs

• 147 new bugs, 61 zero-day, 3 CVEs
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Q&A
Xiaoyue Ma (xma9@gmu.edu)
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