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Semiconductors in Everyday Lives
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• Attacks can be launched via any abstraction layer

• Software bugs patched using updates

• What if hardware is compromised?

Operating System

Application/Software

Firmware

Hardware

Protection of Hardware is essential
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Design Fabrication Testing

Globalized IC Supply Chain

NVIDIA Xavier 
(9B, 12nm)

2018

Apple M1 
(16B, 5nm)

2020

Apple M1 Ultra 
(114B, 5nm)

2022



Hardware Security Threats
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IC counterfeiting Hardware IP 
piracy

Hardware Trojans Reverse-engineering

Source: supplychaindive



Hardware IP Piracy
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US DoJ indicates prominent IC 
design company sufferend a loss 
of around 8.75 billion dollars due 

to IP theft

Are these threats real?

source: semiengineering



Logic Locking
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Logic Locking
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Attacker’s Resources
• Locked design 

• Obtained by reverse-engineering the chip 

Attacker’s Objective
• To recover the secret key

Attacker’s Capabilities
• Analyze reverse-engineered locked design
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Learning Resilient Logic Locking
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Removes correlation between 
key-gate type and key-value

P. Chakraborty, et al., TIFS’21; A. Alaql, et al., TVLSI’21; L. Alrahis, et al., TCAS-II’22; D. Sisejkovic et al., JETC’21; L. Alrahis, et al., DATE’22;

N. Kavand, et al., ICCAD’22; L. Alrahis, et al.; TIFS’21; N. Limaye, et al., TCAD’21; N. Limaye, et al., TCAD’22; A. B. Chowdhury, et al., DAC’23; F. Wang, et al., ISPD’23



Learning Resilient Logic Locking
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𝑘0= 0𝑘0 = 1

𝑘0 𝑘0 = 1= 0

Removes correlation between 
key-gate type and key-value SAIL SnapShot SCOPE OMLA MuxLink

P. Chakraborty, et al., TIFS’21; A. Alaql, et al., TVLSI’21; L. Alrahis, et al., TCAS-II’22; D. Sisejkovic et al., JETC’21; L. Alrahis, et al., DATE’22;

TRLL TRLL+ ALMOST

RGLock TroMUX UNSAIL

SimLL

N. Kavand, et al., ICCAD’22; L. Alrahis, et al.; TIFS’21; N. Limaye, et al., TCAD’21; N. Limaye, et al., TCAD’22; A. B. Chowdhury, et al., DAC’23; F. Wang, et al., ISPD’23

- Failed to attack



Preliminary Problem Modeling
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Locked Design

Circuit to Graph
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GNN-based Key-Prediction

Key-value

• Maps the problem of key-prediction to GNN-based node classification

Preliminary problem modeling obtains KPA of  ~50% (random guess)

How do we find reasons behind the failure of GNN in predicting secret key?

𝑘0

𝐾𝐺

We employ explainable ML to find the reasons behind failure of the attack



Why Explainable ML?
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Explainable ML provides reasons behind the prediction

Complex computations

Outputs only accuracy

Black-box

Important Features Important Nodes



INSIGHT
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𝑘0

𝐾𝐺

Locked Design Explainable GNN
-based Framework

Secret 
Key

Challenge 1: To select a suitable explainer

Solution 1: Perform ablation study on explainers

GNNExplainer

SubgraphX

ZORRO

PGExplainer

GNNExplainer
• is more suitable for our work  (provides better explanations)
• is computationally efficient (600x better than SubgraphX)

Observation

D. Luo, et al., NIPS’20;  H. Yuan, et al., ICML’21; Z. Ying, et al., NeurIPS’19; T. Funke, et al., TKDE‘23



INSIGHT

14

Challenge 2: To identify reasons behind the failure of attack through explanations

Solution 2: We map key-prediction 
problem to INV/BUF prediction problem 𝑘0= 0

𝑘0 = 1

INV

𝑘0= 0

𝑘0 = 1

BUF

KPA improves by 1.86x 

Design b14_C b15_C b17_C b20_C b21_C b22_C

Solution 2 99.78 99.68 99.06 99.53 99.53 99.53



INSIGHT
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Challenge 3: To tackle logic re-synthesized designs

Observation: Explainer analysis indicates different 
importance scores for the gates around key-gate

Incorporating attention 
increases KPA by 10% for 

re-synthesized designs 

Solution 3: Added attention layer to the GNN
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b14_C b15_C b17_C b20_C b21_C b22_C

Key Pre diction Accuracy (KPA)

Without Attention With Attention

Semiconductor industry re-synthesizes designs upon logic locking
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Challenge 4: To tackle insufficient training data

Solution 4: We incorporate two approaches
• Data augmentation
• Semi-supervised learning

Semi-supervised learning increases KPA by 1.29xData augmentation increases KPA by 1.10x



Results
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INSIGHT achieves KPA of 2.96x and 1.86x than SCOPE and OMLA
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Gaussian Blurring Example

INSIGHT recovers secret key in practical designs

Input Golden Output OMLA’s Output INSIGHT’s Output

Results (Real-World Application)



Thank You!
Likhitha Mankali

lm4344@nyu.edu
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