INSIGHT: Attacking Industry-Adopted Learning Resilient Logic Locking Techniques Using Explainable Graph Neural Network

Likhitha Mankali¹, Ozgur Sinanoglu², Satwik Patnaik³

¹New York University, ²New York University Abu Dhabi, ³University of Delaware

Semiconductors in Everyday Lives

- Attacks can be launched via any abstraction layer
- Software bugs patched using updates
- What if hardware is compromised?

Protection of Hardware is essential

Globalized IC Supply Chain

Note: The individual colored blocks are only a representation of the participants present in the semiconductor value chain at various points in time. They are not indicative of their relative market sizes.

Electronics

TSMC starts building 3nm plant in Taiwan worth \$20B

by Matt Hamblen I Nov 4, 2019 9:01am

Hardware Security Threats

OPINION

The overlooked security risks of onshoring chip production

Here are four ways manufacturers can mitigate cybersecurity risks.

Published Dec. 19, 2023

Source: supplychaindive

Hardware IP Piracy

Are these threats real?

US DoJ indicates prominent IC design company sufferend a loss of around 8.75 billion dollars due to IP theft

Automatic Implementation of Secure Silicon (AISS) Dr. Lok Yan

EDA Forms The Basis For Designing Secure Systems

How to accelerate the design process at a lower cost and with less risk.

AUGUST 3RD, 2020 - BY: ADAM CRON

source: semiengineering

A CROSS-LAYER FRAMEWORK FOR COST-EFFECTIVE INTELLECTUAL PROPERTY (IP) PROTECTION

Logic Locking

Logic Locking

Threat Model

Attacker's Resources

- Locked design
 - Obtained by reverse-engineering the chip

Attacker's Objective

Attacker's Capabilities

Analyze reverse-engineered locked design

Learning Resilient Logic Locking

Removes correlation between key-gate type and key-value

N. Kavand, et al., ICCAD'22; L. Alrahis, et al.; TIFS'21; N. Limaye, et al., TCAD'21; N. Limaye, et al., TCAD'22; A. B. Chowdhury, et al., DAC'23; F. Wang, et al., ISPD'23 P. Chakraborty, et al., TIFS'21; A. Alaql, et al., TVLSI'21; L. Alrahis, et al., TCAS-II'22; D. Sisejkovic et al., JETC'21; L. Alrahis, et al., DATE'22;

Learning Resilient Logic Locking

N. Kavand, et al., ICCAD'22; L. Alrahis, et al.; TIFS'21; N. Limaye, et al., TCAD'21; N. Limaye, et al., TCAD'22; A. B. Chowdhury, et al., DAC'23; F. Wang, et al., ISPD'23 P. Chakraborty, et al., TIFS'21; A. Alaql, et al., TVLSI'21; L. Alrahis, et al., TCAS-II'22; D. Sisejkovic et al., JETC'21; L. Alrahis, et al., DATE'22;

Preliminary Problem Modeling

GNN-based Key-Prediction

• Maps the problem of key-prediction to GNN-based node classification

We employ explainable ML to find the reasons behind failure of the attack

Why Explainable ML?

Explainable ML provides reasons behind the prediction

Important Features

Important Nodes

Challenge 2: To identify reasons behind the failure of attack through explanations

Solution 2: We map key-prediction problem to INV/BUF prediction problem

Design	b14_C	b15_C	b17_C	b20_C	b21_C	b22_C
Solution 2	99.78	99.68	99.06	99.53	99.53	99.53

KPA improves by **1.86x**

Semiconductor industry re-synthesizes designs upon logic locking

Challenge 3: To tackle logic re-synthesized designs

Observation: Explainer analysis indicates different importance scores for the gates around key-gate

Solution 3: Added attention layer to the GNN

Incorporating attention increases KPA by **10%** for re-synthesized designs

Challenge 4: To tackle insufficient training data

Solution 4: We incorporate two approaches

- Data augmentation
- Semi-supervised learning

Design	b14_C	b15_C	b17_C	b20_C	b21_C
No Data Augmentation	69.05	72.13	66.67	66.38	67.72
Solution 4	76.56	82.79	71.87	72.56	74.83
Improvement (x)	1.11 x	1.15 x	1.08 x	1.09 x	1.10 x

Data augmentation increases KPA by **1.10x**

Semi-supervised learning increases KPA by **1.29x**

Results

INSIGHT achieves KPA of **2.96x** and **1.86x** than SCOPE and OMLA

Results (Real-World Application)

Gaussian Blurring Example

Thank You!

Likhitha Mankali

lm4344@nyu.edu

MAXEN INCLUSION SCHOOL

