

ALMA MATER STUDIORUM Università di Bologna

EVOKE: Efficient Revocation of Verifiable Credentials in IoT Networks

33rd USENIX Security Symposium 14-16 August, Philadelphia, PA

<u>Carlo Mazzocca¹</u>, Abbas Acar²,

Selcuk Uluagac², Rebecca Montanari¹

¹University of Bologna, ²Florida International University

Motivation: Establishing Trust in IoT Networks

Lack of trust is one of the major concerns that limit the full usage of Internet of Things (IoT) devices and their data

33rd USENIX Security Symposium

Identify Devices and Establish Mutual Trust

- Centralized identity management does not meet the requirements of IoT as they rely heavily on centralized entities (e.g., PKI CAs)
 - \rightarrow Scalability
 - \rightarrow Single Point of Failure
 - \rightarrow Latency and Network Dependence
- Digital identification methods that promotes decentralization are more suitable for IoT environments
 - → The World Wide Web Consortium standardized Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs)

Verifiable Credentials

A VC contains a set of statements about an entity that can be cryptographically verified by a third-party

Limits of Existing Revocation Mechanisms

33rd USENIX Security Symposium

UNIVERSITÀ DI BOLOGN/

EVOKE: Efficient Revocation of Verifiable Credentials in IoT Networks

- Lightweight revocation mechanism tailored for IoT networks
- Establishing trust requires minimal computing a storing capabilities
- Devices can share updates with limited networking overhead

33rd USENIX Security Symposium

Overview

33rd USENIX Security Symposium

Revocation

 When VCs are revoked, the issuer must update the accumulator value and recompute witnesses

33rd USENIX Security Symposium

Revocation

 When VCs are revoked, the issuer must update the accumulator value and recompute witnesses

33rd USENIX Security Symposium

Revocation

 When VCs are revoked, the issuer must update the accumulator value and recompute witnesses

33rd USENIX Security Symposium

Offline Updates

The outdated device updates the accumulator value and disable trusted communications

Evaluation: Commodity IoT Devices

- Due to programmability constraints, we only consider devices supporting browser connection
- Each device is required to store 1.5 KB for the accumulator value and the corresponding witness

Operation	LG Smart TV	Amazon Echo Show	Apple iPhone 12	Oculus Quest 2
Verify valid VC	477.44 ms	499.70 ms	12.62 ms	48.69 ms
Verify revoked VC	476.89 ms	498.67 ms	12.58 ms	47.89 ms

33rd USENIX Security Symposium

Evaluation: Hybrid Networks

- We consider star and mesh network topology
- Baseline represents latencies when sending minimal amount of data

(a) Star network topology

(b) Mesh network topology

Topology	Approach	Total Latency (Verify + Transfer)	E2E Latency
Star Network	EVOKE	1152.7 ms	948.3 ms
	Baseline	967.7 ms	705.5 ms
Mesh Network	EVOKE	545.2 ms	307.5 ms
	Baseline	97.4 ms	91.7 ms

Evaluation: Large-scale Analysis

- 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30 GHz, 4 cores and 16GB RAM
- Up to 1 million nodes
- 0.028% VCs revoked per day (10% yearly)
- Each device interacts with 5 random devices within an hour
- Percentage of devices missing updates (10%, 30%, and 50%)

Evaluation: Large-scale Analysis

96% of the whole network is updated in the first hour

Witness generation decreases over time as credentials getting revoked

Luber-Physical Systems

33rd USENIX Security Symposium

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Conclusion

Minimal Computational and Storage Overhead

 \rightarrow Devices are only required to store 1.5 KB of data

High Scalability

 \rightarrow Memory requirements and verification time are independent from number of VCs

Offline Updates

 \rightarrow Even if a large portion of the network misses updates, almost the whole network can be updated in 1 hour

33rd USENIX Security Symposium

ALMA MATER STUDIORUM Università di Bologna

Thank you!

Carlo Mazzocca

Department of Computer Science and Engineering University of Bologna

carlo.mazzocca@unibo.it

www.unibo.it