
USENIX ’24

YPIR:
High-Throughput Single-Server PIR
with Silent Preprocessing
Samir Jordan Menon (Blyss) and David J. Wu (UT Austin)

Single-Server Private Information Retrieval (PIR)

0 Penguin
1 Linux
2 Finland
3 Sauna

Client

Server

3 Sauna

4 Decode

2 Processing
1 Query

3 Response

[CGKS95]

Server does not learn
which item was retrieved

Can be used to:
- Check compromised passwords [CL24]
- Check certificate revocation [CNCW+23]
- Perform SCT auditing [HHCM+23]

Costs of SimplePIR

0 Penguin
1 Linux
2 Finland
3 Sauna

Client

Server

2 Throughput
1 Query size

3 Response size

360 KB

360 KB

11 GB/s

>16 MB Offline download

[HHCM+23]

Goal for this work: similar costs,
without offline downloads

(1) SimplePIR/DoublePIR [HHCM+23]

PIR based on hints that clients download offline

(2) HintlessPIR/Tiptoe = SimplePIR + hint packing [LMRS23/HDCZ23]

PIR without offline communication, but ~10× larger responses

(3) YPIR (this work) = SimplePIR/DoublePIR + better hint packing

PIR without offline communication and small responses

For 1-bit retrieval: similar costs to DoublePIR, with no hints!

For large item retrieval: 8× smaller responses than HintlessPIR

(1) SimplePIR
[HHCM+23]

N

N

Plaintext database

Desired item =

=

Result
ciphertexts

Result is an encryption of the
target column of the database,
containing the item of interest

→

𝖣𝖾𝖼𝗋𝗒𝗉𝗍

→
→
→
→

Response is O(N)

d + 1

×

Matrix
multiply

Query
ciphertexts

 depends only on the security
parameter, not the database size
d

Each row is an additively
homomorphic LWE ciphertext

Last ciphertext encrypts “1”,
the rest “0”

Query is O(N)

DoublePIR: recurse one time on the result

(1) SimplePIR

d

× =

[HHCM+23]

Matrix
multiply

Result
ciphertexts

→

𝖣𝖾𝖼𝗋𝗒𝗉𝗍

→
→
→
→

Key observation: most of query
is pseudorandom, and can be
fixed for all clients ()d = 1024

Query
ciphertexts

1 d 1

The “hint”: can be
precomputed in advance,
and depends only on the

database contents

Clients download the hint
offline. Clients re-download

when database updates!

N

N

Plaintext database

Desired item =

(1) SimplePIR

The “hint”: can be
precomputed in advance,
and depends only on the

database contents

Clients download the hint
offline. Clients re-download

when database updates!

Megabytes of
communication to every
client on every update.

[HHCM+23]

Goal for this work: similar costs,
without offline downloads

(1) SimplePIR

d

× =

[HHCM+23]

Matrix
multiply

Result
ciphertexts

→

𝖣𝖾𝖼𝗋𝗒𝗉𝗍

→
→
→
→

Key observation: most of query
is pseudorandom, and can be

fixed for all clients

Query
ciphertexts

1 d 1

The “hint”: can be
precomputed in advance,
and depends only on the

database contents

Clients download the hint
offline. Clients re-download

when database updates!

N

N

Plaintext database

Desired item =

Response is small now;
concretely, 120 KB

Let’s analyze decryption!

Analyzing decryption in SimplePIR

≈

Decrypted
target column

(rounding)

:𝖣𝖾𝖼𝗋𝗒𝗉𝗍

+

Online response

1d

N ×

LWE
Secret KeyOffline Hint

1

(rounding)

Analyzing decryption in SimplePIR

Clients don’t need the whole hint to decrypt!
They just need offline hint × LWE secret key.

How can clients get this inner product, without communicating the entire hint?

≈

Decrypted
target column

:𝖣𝖾𝖼𝗋𝗒𝗉𝗍

+

Online response

1d

N ×

LWE
Secret KeyOffline Hint

1

(2) HintlessPIR/Tiptoe: hint packing
1

Result encodes:
offline hint × LWE secret key

=

Server treats the hint as a plaintext,
and multiplies it by the encrypted
secret vector in the outer scheme

Inner LWE
secret key

Outer homomorphic
encryption

d

N

Offline Hint

×

Query
component

Clients encrypt their inner LWE secret vector in
another, outer homomorphic encryption scheme

based on Ring-LWE that is more compact

Each row is a
ciphertext in the

inner scheme

smaller - can be
sent in the online

response!

d = 1024 ×

[LMRS23, HDCZ23]

[LMRS23, HDCZ23]

1

Result encodes:
offline hint × LWE secret key

=

Inner LWE
secret key

Outer homomorphic
encryption

d

N

Offline Hint

×

Query
component

Clients encrypt their inner LWE secret vector in
another, outer homomorphic encryption scheme

that is more compact

Each row is a
ciphertext in the

inner scheme

smaller!

d = 1024 ×(2) HintlessPIR/Tiptoe: hint packing

Plaintext space of outer scheme must hold
the ciphertext space of inner scheme (LWE)

Drawback: the “double wrapping”
increases the response size by ~10×!

(3) YPIR: better hint packing

d

N

LWE ciphertexts
(Offline Hint)

Ring-LWE ciphertext(s)

Prior work:
Homomorphically compute LWE

decryption’s inner product in Ring-LWE
1

smaller!

≈ d = 1024 ×

Also show: ~85% of work in this
procedure can be moved to a one-

time offline precomputation.

“Double wrapping”
makes ciphertexts ~10×

larger in practice

Yields much smaller
responses

Avoid re-embedding, and just use an
algebraic transform.

View LWE ciphertexts as ‘corrupted’
RLWE ciphertexts, and then perform key

switching to uncorrupt them [CDKS21].

(3) YPIR: additional techniques

‣ Small item retrieval: we choose to use DoublePIR as the first phase PIR
when database records are small, lowering response size from to .

‣Cross-client batching: process queries from multiple clients in batching to
increase effective throughput beyond the memory bandwidth limit

‣Preprocessing: speed up SimplePIR preprocessing using Ring-LWE

‣SCT Auditing: application of PIR to verify the correctness of a signed
certificate timestamp (SCT) using a frequently-updating data structure

O(N) O(1)

See paper for details!

Performance
1-bit retrieval from an 8 GB database

DoublePIR* HintlessPIR YPIR
(this work)

Upload - - -

Download 14 MB - -

Upload 1 MB 1.4 MB 1.5 MB

Download 12 KB 1.5 MB 12 KB

Throughput 13 GB/s 5 GB/s 12 GB/s

O
ffl

in
e

O
nl

in
e

Weekly cost to use YPIR to probabilistically
check if a TLS certificate has appeared in a

certificate transparency log containing 5 billion
certificates is 16× lower than HintlessPIR.

Similar costs, without
offline downloads? Yes*!

Performance
32 KB retrieval from an 8 GB database

SimplePIR HintlessPIR YPIR+SP
(this work)

Upload - - -

Download 362 MB - -

Upload 362 KB 1.4 MB 1.3 MB

Download 362 KB 1.7 MB 228 KB

Throughput 11 GB/s 5 GB/s 5 GB/s

O
ffl

in
e

O
nl

in
e

Check whether a password has
appeared in a database of 250 million

breached passwords

Takeaways
‣ Offline costs matter - megabytes of communication per client, per database update

‣ For small items, YPIR removes all offline communication from DoublePIR at little cost

‣ For large items, YPIR has similar throughput and query size to HintlessPIR, with smaller responses

‣ Replacing a bootstrapping-like approach with an algebraic solution can yield better efficiency

‣ Paper at eprint.iacr.org/2024/270.pdf, code at github.com/menonsamir/ypir

‣ Open problems:

• Smaller queries: queries less than with high throughput

• Silent preprocessing for PSI, ORAM, verifiable PIR

N

https://eprint.iacr.org/2024/270.pdf
https://github.com/menonsamir/ypir

