SHiFT: Semi-hosted Fuzz Testing for Embedded Applications

Alejandro Mera, Changming Liu, Ruimin Sun, Engin Kirda, Long Lu

1

Embedded devices in the IoT era

Embedded devices are everywhere and adopted in critical areas

"IoT adoption is critical to ongoing business success¹"

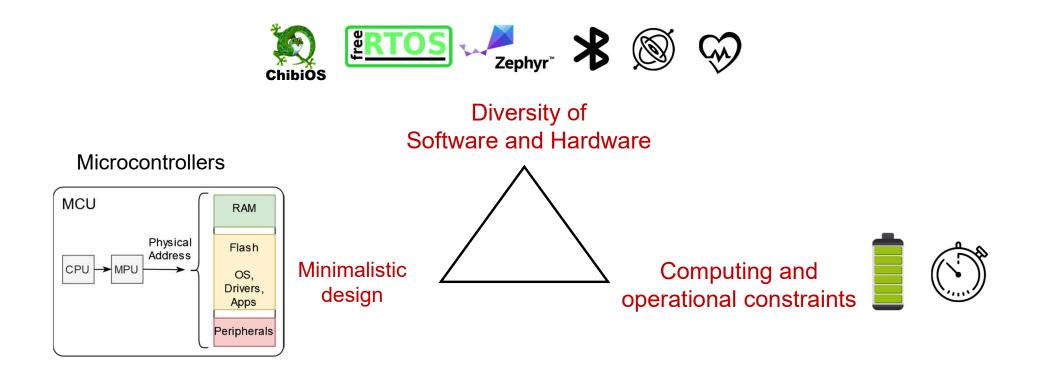
¹ The State of IoT/OT Cybersecurity in the Enterprise, Ponemon Institute, 2021.

Vulnerabilities and Attacks on Embedded Devices

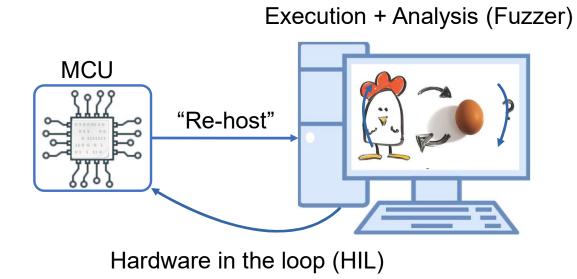
Ehe New York Eimes

A New Era of Internet Attacks Powered by Everyday Devices DARKReading The Edge DR Tech Sections Events Medical and IoT Devices From More Than 100 Vendors Vulnerable to Attack

#ThePCMagCheap100 #Windows11 Reviews Best Products How-To News Newsletter: Home > News > Security

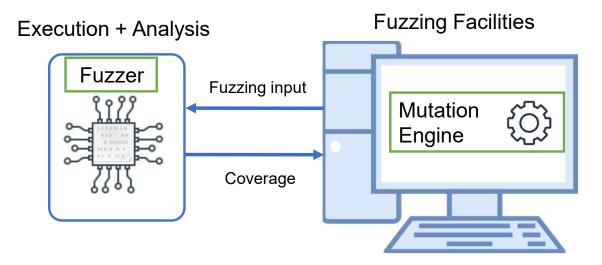

CISA Warns That BrakTooth Vulnerabilities Can Now Be Exploited

A proof of concept exploit for the BrakTooth flaw in countless Bluetooth devices has been shared.


Broadcom chip bug opened 1 billion phones to a Wi-Fi-hopping worm attack

Wi-Fi chips used in iPhones and Android may revive worm attacks of old.

Challenges testing embedded devices

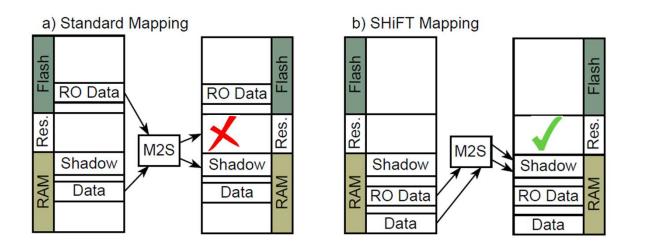

The state of the art: Re-hosting

Open Challenges:

- Reduced Fidelity
- Reduced observability
- Limited compatibility

SHiFT: Semi-Hosted Fuzz Testing

"Semihosting enables firmware, running natively in an MCU, to use facilities available in a workstation"

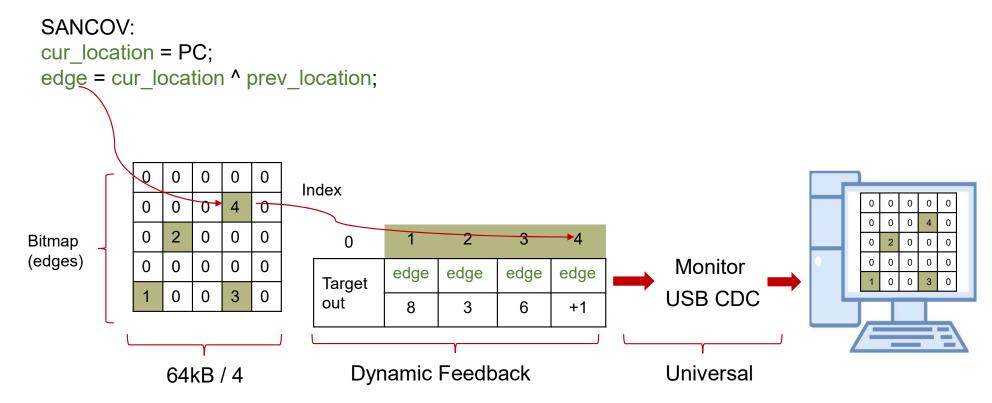

Design: SHiFT proposed architecture

Design goals:

- Meant for in-house testing
- Supports desktop-level
 instrumentation
- Compatible with standard
 development platforms

Design: supporting ASAN instrumentation without MMU

ASAN Mem-to-Shadow (M2S) : (Addr>>3) + Offset Incompatible with MCU (Muench et al. 2018)


Faults

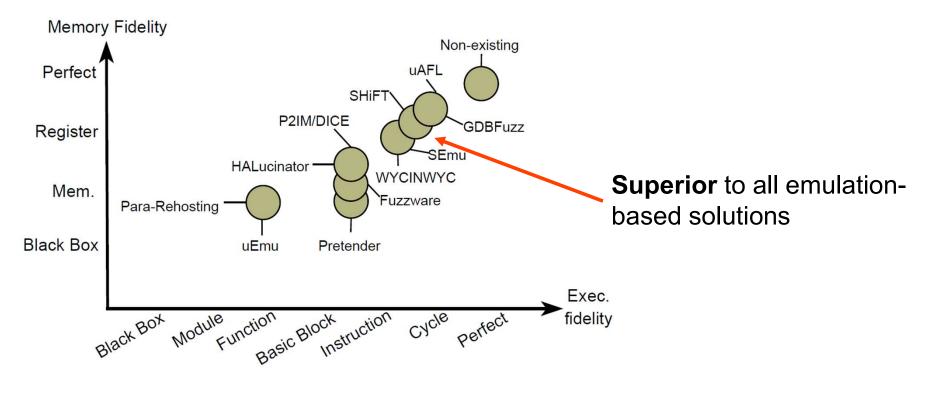
- Cortex-M MPU and traps
- Exception model

Instrumentation

- Memory map relocation
- Tailored offsets

Design: Coverage, feedback and communication protocol

Implementation:


- ARMv7-M, ARMv8-M and Xtensa
- Universal serial Proxy (AFL/AFL++ and others)
- Firmware (MCU)
 - FreeRTOS 10.4 Kernel extensions
 - Instrumentation runtime GNU ARM 10.3
 - Tailored GCC compiler (ASAN offset)

Evaluation: Architecture compatibility

Architecture	MPU	GCC	SANCOV	ASAN	UBSAN	Port MCU
ARMv7-M	\checkmark	9.3.1	\checkmark	\checkmark	\checkmark	SMT32H745/H743
						SAMD51, K66F
ARMv8-M	\checkmark	9.3.1	\checkmark	\checkmark	\checkmark	STM32L552
Xtensa	\checkmark	8.4.0	\checkmark	\checkmark	\checkmark	ESP32 WROM
MIPS M4K	MMU	8.3.1	\checkmark		\checkmark	PIC32MX795
MIPS MK64F	MMU	8.3.1	\checkmark		\checkmark	PIC32MZ2048
RISC-V	optional	9.2.0	\checkmark		\checkmark	GD32VF103CBT6
Renesas RX	\checkmark	8.3	\checkmark		\checkmark	RSF562N8BDFP
Renesas RL	\checkmark	11.1*	\checkmark		\checkmark	_
AVR		7.3.0	\checkmark			Atmega2560
MSP430	optional	9.3.1	\checkmark			-
ARC	optional	11.2.0	\checkmark			-
Coldfire		9.3.0	\checkmark			_
Power PC 400		9.3.0	\checkmark	\checkmark	\checkmark	-

Fully compatible with **12 embedded** architectures

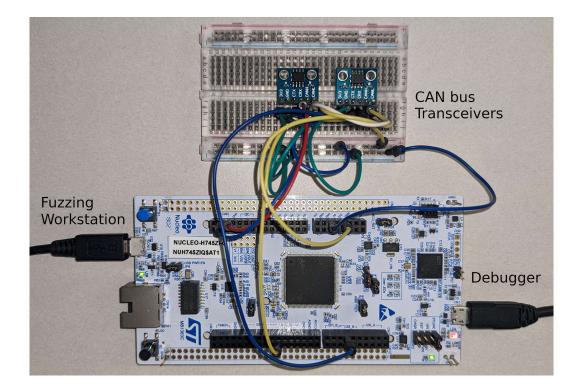
Evaluation: Fidelity analysis

Based on the 2-dimensional analysis proposed by Wright et al., 2021

Evaluation: synthetic raw performance

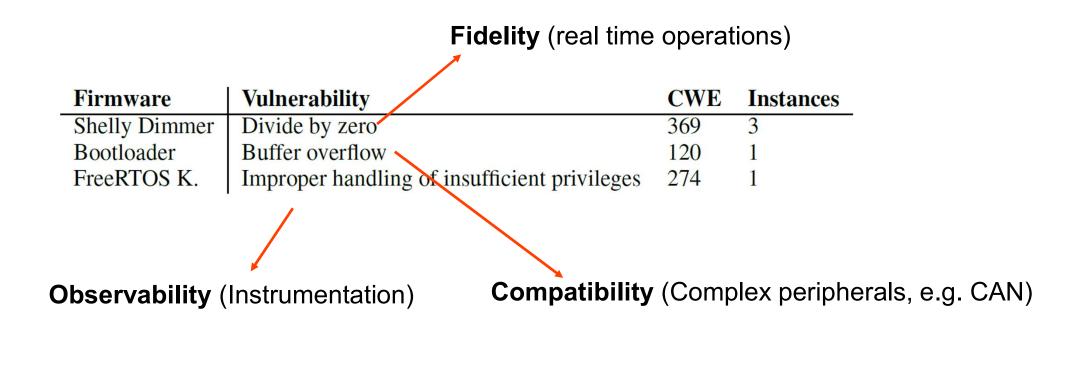
Fuzzing Mode	Native AFL	SHiFT S-C	SHiFT D-C
Standard	4.9	4.8	0.41
Persistent	23.5	5.9	5.1
Standard With ASAN	1.9	4.6	0.32
Persistent With ASAN	22.7	5.7	4.1

2.4x faster than a workstation


Performance in [kRun/s] of a single instance of SHiFT for single (S-C) and dual-core (D-C) configurations compared with native AFL (Ubuntu 22.04, AMD Ryzen 3700x, 32 GB).

Evaluation: case studies and comparison with the SoTA

5 new vulnerabilities				No false positives								~ 100x faster							
Ref	#	Firmware	Method	Board	S [r/s]	HiFT TP	FP	[r/s]	P2IM/I SU		FP	[r/s]	Fuzwa SU	ne TP	FP	[r/s]	GDBF SU	uzz TP	FP
P2IM	1	PLC	Function call	H743	3100	4	0	32.7	×95	4	4	30.9	$\times 100$	4	2	70	$\times 44$	4	0
DICE	2	Modbus	Full-stack DMA	H743	1800	3	0	41.6	$\times 43$	3	2	NB	-	-	_	327	$\times 6$	0	0
	3	Midi	Full-stack DMA	H743	1200	2	0	59.9	$\times 20$	2	0	208	$\times 6$	0	0	37	$\times 32$	0	0
	4	Synthetic	Function call	H743	4800	11	0	94.5	$\times 51$	3	1	85.9	$\times 55$	0	10	32.1	$\times 150$	2	0
	5	GPS Receiver	Function call	ESP32	380	0	0	NB	-	-	-	NB	-	-	2	170	$\times 2$	0	0
SHiFT	6	AT parser	Function call	SAMD51	276	0	0	44.1	$\times 6$	0	1	53.5	$\times 5$	0	1	55	$\times 5$	0	1
	7	Command line	Function call	K66F	233	0	0	63.5	$\times 4$	0	1	321.9	$\times 1$	0	1	245	$\times 1$	0	1
	8	Shelly Dimmer	Real-time DMA	H743	1148	3	0	NB	_	-	-	321.3	$\times 4$	0	1	24.5	$\times 25$	0	4
	9	Bootloader	Baremetal	H745	170	1	0	NB	_	-	-	89	$\times 2$	0	0	NB	-	-	-
	10	FreeRTOS K.	Function call	L552	3750	1	0	NB	-	-	-	NB	-	-	-	43	$\times 86$	0	0


24-hour fuzzing campaigns of SHiFT on real firmware and a Synthetic benchmark compared to the SoTA. SU: SHiFT SpeedUp (average), TP: TruePositives (median), FP: False Positives (median), NB: No Bootstrap. New TPs observed on firmware # 8, 9, 10.

Evaluation: testing capabilities analysis (CAN bus)

- Supports complex peripherals not supported by emulators.
- Great flexibility to leverage heterogenous architectures (M7 & M4)
- Holistic considering operative and timing constraints

Evaluation: unique testing capabilities on real scenarios

Conclusions

- **Testing** embedded devices require holistic methods that consider SW and HW diversity, minimalistic designs, and operational constraints.
- SHiFT is a novel semihosted framework to enable fuzz testing on development platforms with high fidelity.
- SHiFT helped to identify unknown vulnerabilities in realistic scenarios not supported by emulation-based solutions.

SHiFT: Semi-hosted Fuzz Testing for Embedded Applications

Alejandro Mera

Source code: <u>https://github.com/RiS3-Lab/SHiFT</u>

Thanks!