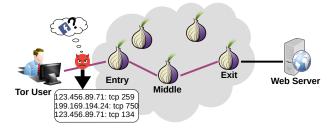
Stop, Don't Click Here Anymore Boosting Website Fingerprinting By Considering Sets of Webpages

Asya Mitseva and Andriy Panchenko

Chair of IT Security

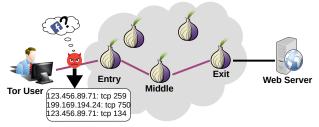
Brandenburg University of Technology (BTU Cottbus, Germany)

August 15, 2024


bbbtu Brandenburg University of Technology Cottbus - Senftenberg

Motivation

• The Tor network: most popular low-latency anonymization network


Motivation

- The Tor network: most popular low-latency anonymization network
- Problem: Tor is vulnerable to website fingerprinting (WFP)
 - Infer website accessed without breaking the encryption
 - Using only packet sizes, direction, and timestamps
 - High efficiency in laboratory settings

Motivation

- The Tor network: most popular low-latency anonymization network
- Problem: Tor is vulnerable to website fingerprinting (WFP)
 - Infer website accessed without breaking the encryption
 - Using only packet sizes, direction, and timestamps
 - High efficiency in laboratory settings

• Limitations

- Scalability in real-world settings still under research
- Typical scenario: detection of isolated webpage loads

However,

users visit multiple pages of a website sequentially, e.g., by following links!

• Novel evaluation setting

- Consecutive user's visits of multiple pages of a website
- Detect the website, not the webpage

• Novel evaluation setting

- Consecutive user's visits of multiple pages of a website
- Detect the website, not the webpage
- Systematic analysis of state-of-the-art webpage classifiers
 - Goal: Investigate their suitability for website fingerprinting
 - 20 to 30% decrease in accuracy for website fingerprinting

• Novel evaluation setting

- Consecutive user's visits of multiple pages of a website
- Detect the website, not the webpage
- Systematic analysis of state-of-the-art webpage classifiers
 - Goal: Investigate their suitability for website fingerprinting
 - 20 to 30% decrease in accuracy for website fingerprinting

• Novel fingerprinting strategies for our new evaluation setting

- Use of voting to boost existing webpage classifiers
 - Six different voting-based fingerprinting strategies
- Set-aware classifier based on multi-instance learning (MIL)

• Novel evaluation setting

- Consecutive user's visits of multiple pages of a website
- Detect the website, not the webpage
- Systematic analysis of state-of-the-art webpage classifiers
 - Goal: Investigate their suitability for website fingerprinting
 - 20 to 30% decrease in accuracy for website fingerprinting

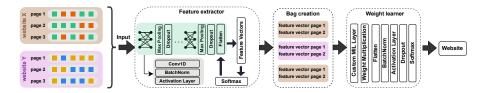
• Novel fingerprinting strategies for our new evaluation setting

- Use of voting to boost existing webpage classifiers
 - Six different voting-based fingerprinting strategies
- Set-aware classifier based on multi-instance learning (MIL)
- Limited protection provided by existing WFP defenses
 - Up to five times less effective than expected or even completely useless

Our Novel Fingerprinting Techniques

• Voting-based strategies

- Train state-of-the-art webpage classifier on multiple pages of websites
- Compute probability of a single page to belong to a website
- Calculate join probability of pages belonging to a website


Our Novel Fingerprinting Techniques

• Voting-based strategies

- Train state-of-the-art webpage classifier on multiple pages of websites
- Compute probability of a single page to belong to a website
- Calculate join probability of pages belonging to a website

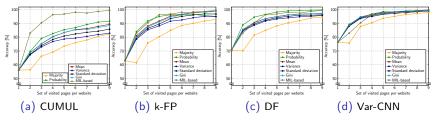
• Set-aware MIL-based classifier

- A set of pages belonging to single website forms a bag
- Learn a classification model to predict labels of bags
- Adaptive learning of weights for single pages in a bag

Analysis of Our Fingerprinting Techniques (1/3)

• Dataset and evaluation setup

- ▶ 100 monitored websites from different categories, layout, and content
- 90 different pages per website
- Four state-of-the-art webpage classifiers
- 10-fold cross-validation for all experiments


Analysis of Our Fingerprinting Techniques (1/3)

• Dataset and evaluation setup

- 100 monitored websites from different categories, layout, and content
- 90 different pages per website
- Four state-of-the-art webpage classifiers
- 10-fold cross-validation for all experiments

• Evaluation in laboratory settings

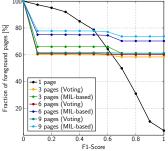
- Users browse consecutively multiple pages of a single website
- Increase of the detection rate by almost 30% to 40%

Analysis of Our Fingerprinting Techniques (2/3)

• Impact of different training tactics

- Our voting-based strategies
 - 70 training pages are enough to obtain high accuracy
- Our set-aware MIL-based classifier
 - Use of two training bags
 - Over 90% accuracy when four pages are consecutively visited

We refer to our paper for the extensive analysis of our methods


Analysis of Our Fingerprinting Techniques (2/3)

• Impact of different training tactics

- Our voting-based strategies
 - 70 training pages are enough to obtain high accuracy
- Our set-aware MIL-based classifier
 - Use of two training bags
 - Over 90% accuracy when four pages are consecutively visited
- We refer to our paper for the extensive analysis of our methods

Real-world evaluation

- Use of 5000 unmonitored websites
- Our methods achieve F1-scores of 1.0 for more than half of the websites
- When visiting at least three consecutive pages of a website

Analysis of Our Fingerprinting Techniques (3/3)

Increased robustness against existing WFP defenses

- Increase of the detection rate up to 5 times
- No protection by defenses with low implementation costs

Defense	Classifier	Set of pages								
-		1	2	3	4	5	6	7	8	9
Tamaraw	Voting	4.61	7.20	9.93	12.47	12.67	14.07	16.27	17.80	18.93
	MIL-based	-	5.37	7.25	8.81	10.79	12.19	13.77	14.73	16.36
CS-Buflo	Voting	10.89	18.13	23.33	33.27	37.40	43.93	46.93	52.47	56.00
	MIL-based	-	12.89	19.25	24.77	29.62	34.19	37.18	40.21	43.17
TrafficSliver-Net	Voting	19.92	29.93	34.48	38.73	40.45	42.79	43.80	44.85	46.55
	MIL-based	-	10.40	14.48	18.62	22.06	25.67	28.69	32.18	35.21
WTF-PAD	Voting	90.72	99.20	99.73	100.00	100.00	100.00	100.00	100.00	100.00
	MIL-based	-	98.28	99.61	99.89	99.99	99.99	99.99	100.00	100.00
RegulaTor	Voting	17.17	27.67	38.27	44.20	50.20	56.20	61.53	63.60	64.87
	MIL-based	-	16.11	22.83	27.77	31.89	36.19	40.29	43.44	46.48
FRONT	Voting	67.00	88.60	96.87	98.73	99.40	99.67	99.87	99.93	100.00
	MIL-based	-	86.41	94.82	97.70	98.85	99.38	99.55	99.77	99.86

- Website fingerprinting is privacy threat for Tor users
 - Especially those browsing multiple pages of website sequentially

- Website fingerprinting is privacy threat for Tor users
 - Especially those browsing multiple pages of website sequentially
- Novel strategies using implicit knowledge on browsing behavior
 - Six voting-based strategies to boost existing webpage classifiers
 - Novel set-aware classifier based on multi-instance learning
 - Order of visiting pages is not necessary for our methods

- Website fingerprinting is privacy threat for Tor users
 - Especially those browsing multiple pages of website sequentially
- Novel strategies using implicit knowledge on browsing behavior
 - Six voting-based strategies to boost existing webpage classifiers
 - Novel set-aware classifier based on multi-instance learning
 - Order of visiting pages is not necessary for our methods
- More consecutive pages visited, higher detection rate
 - Significant improvement of the detection rate in real-world settings
- Significant reduction in protection by existing defenses

- Website fingerprinting is privacy threat for Tor users
 - Especially those browsing multiple pages of website sequentially
- Novel strategies using implicit knowledge on browsing behavior
 - Six voting-based strategies to boost existing webpage classifiers
 - Novel set-aware classifier based on multi-instance learning
 - Order of visiting pages is not necessary for our methods
- More consecutive pages visited, higher detection rate
 - Significant improvement of the detection rate in real-world settings
- Significant reduction in protection by existing defenses

Stop, Don't Click Here Anymore: Boosting Website Fingerprinting By Considering Sets of Subpages

We are hiring! See our open positions.