Forget and Rewire: Enhancing the Resilience of Transformer-based Models against Bit-Flip Attacks

Najmeh Nazari, Hosein Makrani, Chongzhou Fang, Hossein Sayadi, Setareh Rafatirad, Khaled N. Khasawneh, and Houman Homayoun

33rd USENIX Security August 2024

Outline

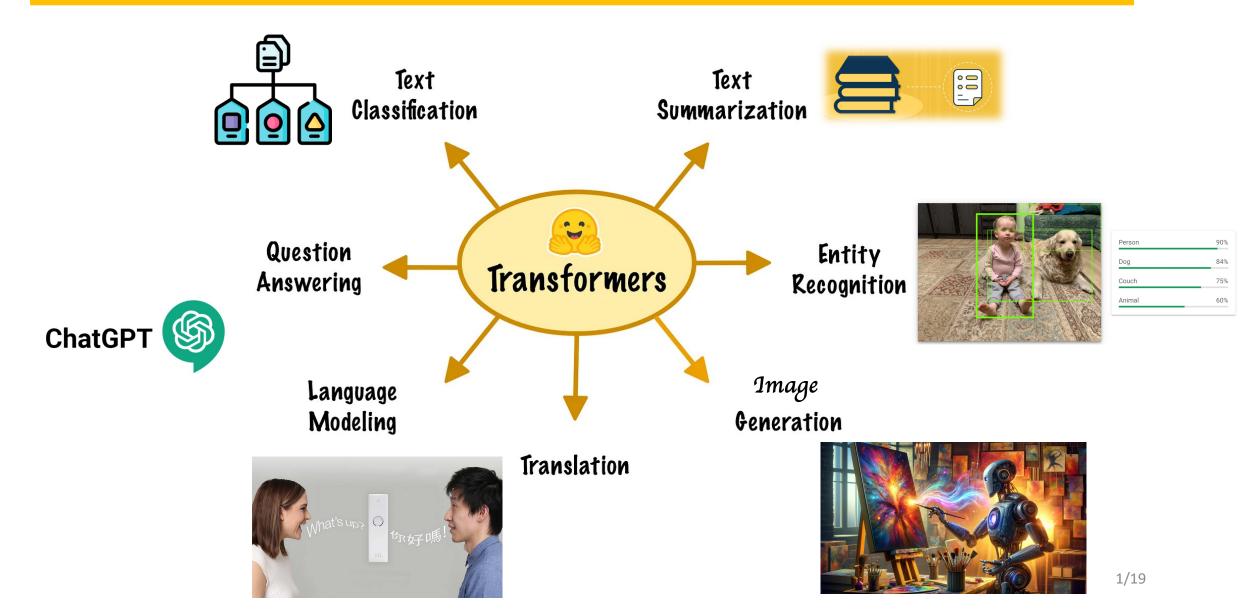
- Background and Problem Statement
- Threat Model
- □ Inspiration and Contribution
- **Gold Forget and Rewire**
- **Evaluation and Discussion**
- Conclusion

Outline

Background and Problem Statement

- Threat Model
- □ Inspiration and Contribution
- **Gold Forget and Rewire**
- **D** Evaluation and Discussion
- Conclusion

Transformer Models

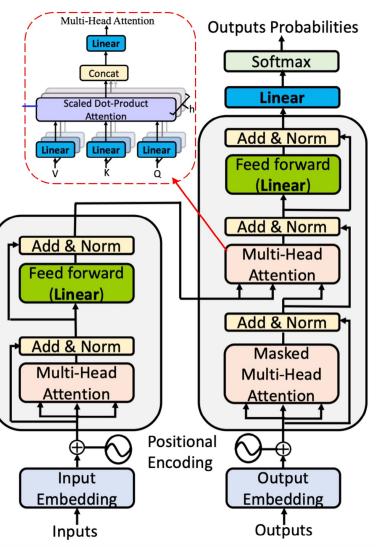


Transformer Models

Linear layer

Efficient (training & inference)

Scalable



Vaswani, Ashish, and et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformer Models

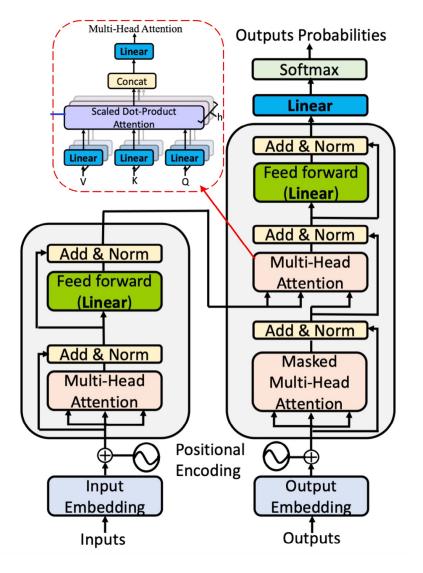
Linear layer

Efficient (training & inference)

Scalable

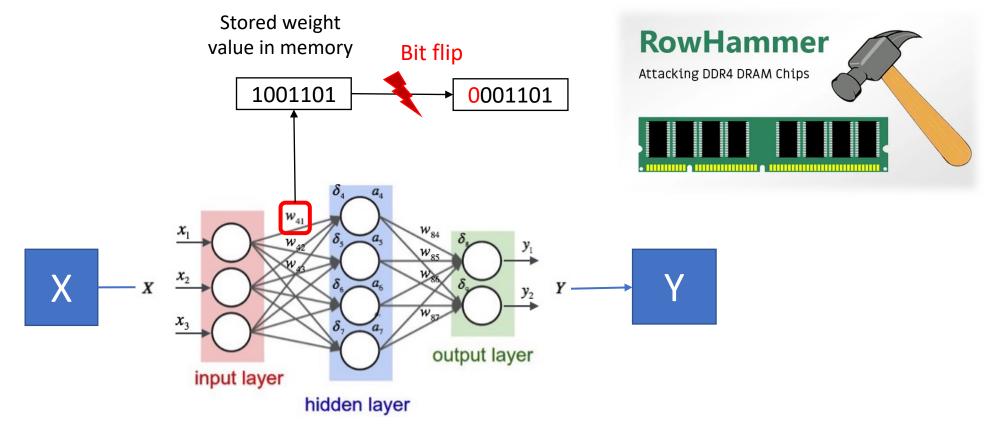
□ Vulnerable to Bit Flip Attack

Can we use Linear layer to increase the resilience of Transformers against BFAs?



A

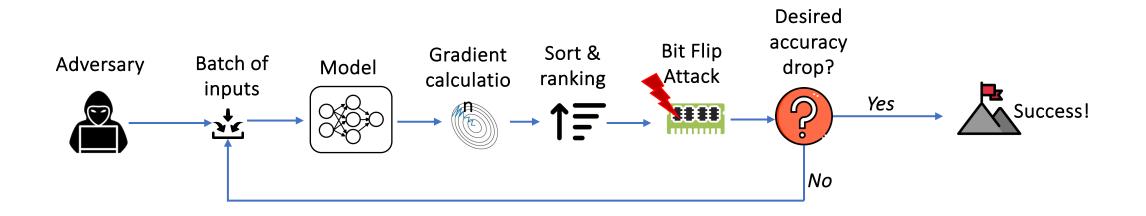
Bit Flip Attack



Neural network: Y = F(X . W + b)

Yao, Fan, and et all. "DeepHammer: Depleting the intelligence of deep neural networks through targeted chain of bit flips." In 29th USENIX Security Symposium (USENIX Security 20), 2020.

Flow of Bit Flip Attack



Attacker goal: use minimum number of BF for degrading the accuracy

Outline

Background and Problem Statement

Threat Model

- **Inspiration and Contribution**
- **Gold Forget and Rewire**
- Evaluation and Discussion
- Conclusion

Threat Model

- □ Assumptions about the Adversary

Run Queue R = Ready to Run

Assumption of a white-box attack scenario (complete knowledge of the original model's architecture and parameters).

- **Basic Adversary**
- **Expert Adversary**
- **Oracle Adversary**

	Basic Adversary	Expert Adversary	Oracle Adversary
Knowledge of Defense	×		
Access to defense configuration	×		
Access to gradient on deployed model			
Requires equivalent model for BFA testing			

	Basic Adversary	Expert Adversary	Oracle Adversary
Knowledge of Defense	×		
Access to defense configuration	×	×	
Access to gradient on deployed model			
Requires equivalent model for BFA testing		X	

	Basic Adversary	Expert Adversary	Oracle Adversary
Knowledge of Defense	×		
Access to defense configuration	×		
Access to gradient on deployed model	×		
Requires equivalent model for BFA testing			

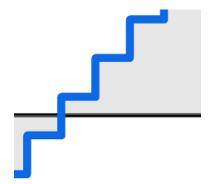
Outline

- Background and Problem Statement
- Threat Model
- □ Inspiration and Contribution
- **Gold Forget and Rewire**
- Evaluation and Discussion
- Conclusion

Model Hardening

Detection and Recovery

- Model Hardening
 - Quantization
 Require retraining
 Degrades accuracy



He, Z., and et al. "Defending and harnessing the bit-flip based adversarial weight attack", CVPR 2020

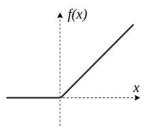
Model Hardening

Quantization

He, Z., and et al. "Defending and harnessing the bit-flip based adversarial weight attack", CVPR 2020

Activation optimization Like ReLu, Not completely mitigate the BFA

Jinyu Zhan., and et al. "Improving fault tolerance for reliable dnn using boundary-aware activation", IEEE TCAD 2021



Model Hardening

Quantization

He, Z., and et al. "Defending and harnessing the bit-flip based adversarial weight attack", CVPR 2020

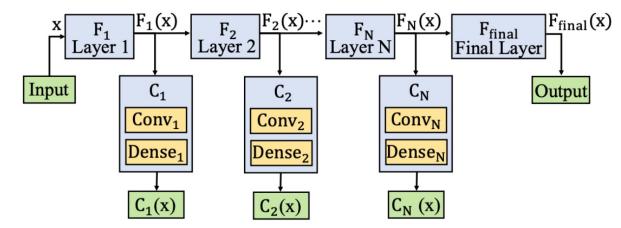
Activation optimization

Jinyu Zhan., and et al. "Improving fault tolerance for reliable dnn using boundary-aware activation", IEEE TCAD 2021

Randomization

Ageis: Additional classifier layers internally and dynamic exit

Wang, J., and et al, "Aegis: Mitigating targeted bit-flip attacks against deep neural networks", USENIX Security, 2023



- **Detection and Recovery**
 - ECCLimitation in recovery and detection

1 1 0 1 1 ERROR 1 1 1 1 1

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." *IEEE TCAD*, 2024.

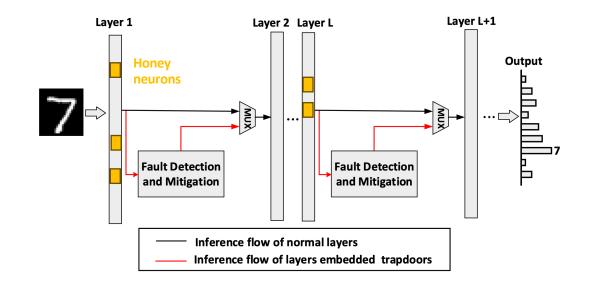
Detection and Recovery

ECC

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." IEEE TCAD, 2024.

NeuroPots Expert attacker can bypass it by setting threshold

Liu, Q., and et al, "NeuroPots: Realtime Proactive Defense against Bit-Flip Attacks in Neural Networks", USENIX Security, 2023.



Inspiration

Brain RewiringNeurons that fire together wire together!

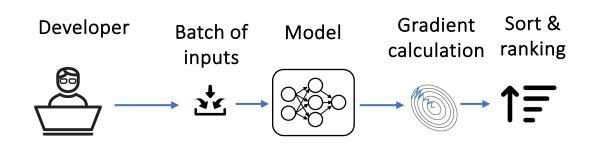
□ Forget unimportant connections and Rewire them to robust the important ones

We call this operation, Forget and Rewire or FaR.

Outline

- Background and Problem Statement
- **Threat Model**
- □ Inspiration and Contribution
- **Gold Forget and Rewire**
- Evaluation and Discussion
- Conclusion

Forget and Rewire Configuration

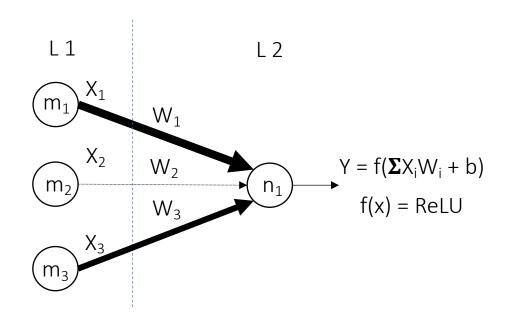


Forget and Rewire Configuration

Match dead neurons with critical ones

Applying FaR CFG

Normal linear layer



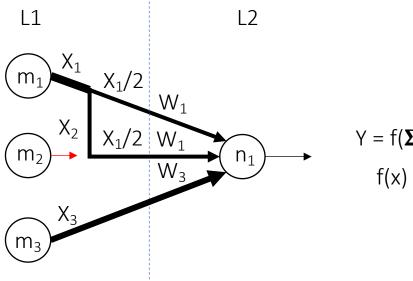
$$X_1 > X_3 > X_2 = 0$$

Y = f(X_1W_1 + X_2W_2 + X_3W_3 + b)
→ Y = f(X_1W_1 + X_3W_3 + b)

Sensitive weight : W₁

Note: Connections' thickness shows the gradient value

Applying FaR CFG

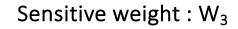


 $Y = f(\mathbf{\Sigma}X_iW_i + b)$

f(x) = ReLU

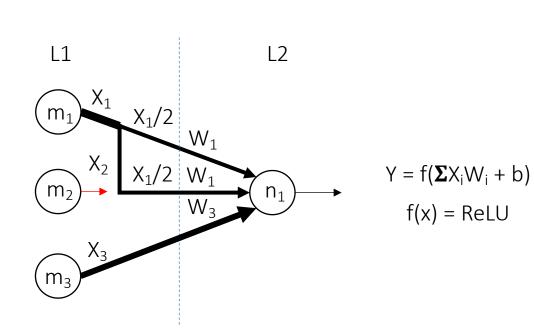
- □ Forget m2's connection
- Rewire W2 with W1
- Replace W2 value with W1
- Redistribute X1 activation to W2 and W1
- Preserve model's functionality

 $X_3 > (X_1/2) = (X_1/2)$ Y = f((X_1/2)W1 + (X_1/2)W1 + X_3W_3 + b) $\Rightarrow Y = f(X_1W_1 + X_3W_3 + b)$



Applying FaR CFG

Forget & Rewire



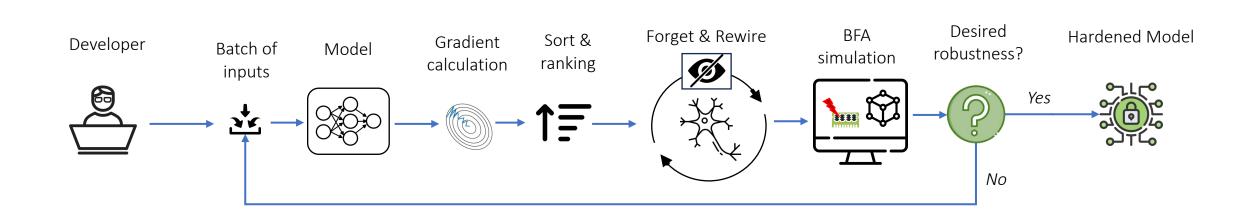
Concealing Critical Parameters

Reducing the gradient valueRedistributing task

- □ Increasing robustness
 - Both W1 and W2 must be attacked
 - □ Increases the cost of attack

 $X_3 > (X_1/2) = (X_1/2)$ Y = f((X_1/2)W1 + (X_1/2)W1 + X_3W_3 + b) $\Rightarrow Y = f(X_1W_1 + X_3W_3 + b)$

FaR Flow



Outline

- Background and Problem Statement
- **Threat Model**
- □ Inspiration and Contribution
- **Gold Forget and Rewire**
- **Evaluation and Discussion**
- Conclusion

Experimental Setup

Datasets used for evaluation

- ImageNet
- MNIST
- CIFAR-10/100
- □ Yelp review

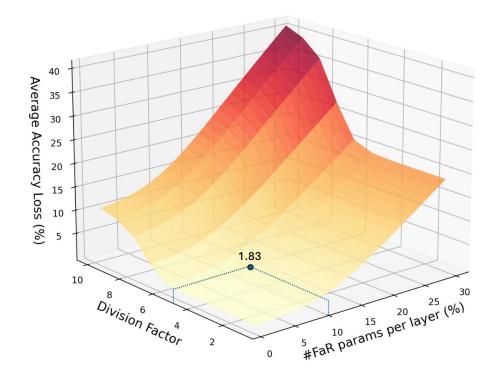
Models

- Custom ViTs (For MNIST, and CIFAR)
- □ google/vit base patch16 224
- dbmdz/bert large cased finetuned conll03 english

Evaluation metrics

- Accuracy
- Robustness

Evaluation: Impact on Accuracy

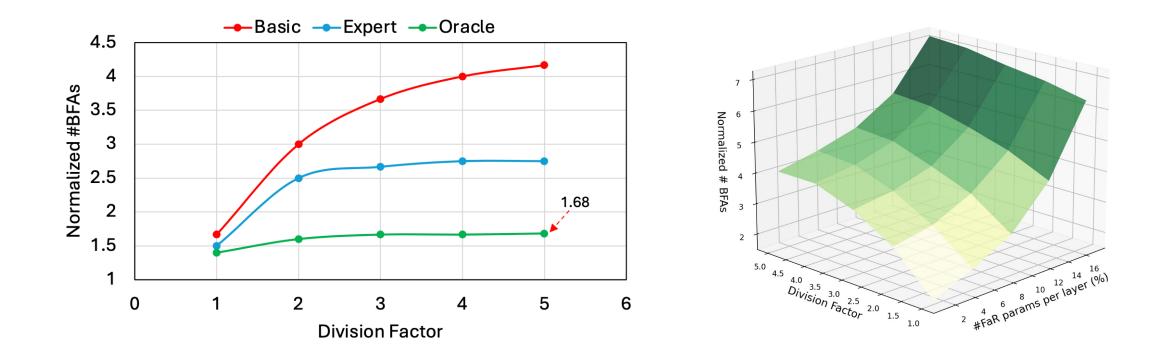


With 10% FaR per layer

		1		
Dataset	w/o FaR	w FaR	Ageis	NeuroPots
MNIST	98.3	-0.1	—	
CIFAR-10	96.1	I -1.14 I	-1.26	-1.0
CIFAR-100	92.8	-1.35	-1.96	
ImaegNet	88.4	-1.97	—	-1.3
Yelp review	Base	-1.82	—	

Trade off between Accuracy and Robustness

Evaluation: Robustness



With keeping same level of accuracy loss (2%)

- □ Storage and Time overhead
- **Dropout and Pruning**
- Adversarial example input attack

Please read the paper for detailed evaluation and analysis

Outline

- Background and Problem Statement
- **Threat Model**
- □ Inspiration and Contribution
- **Gold Forget and Rewire**
- **D** Evaluation and Discussion
- Conclusion

Conclusion

- Advantages of FaR
 - Redistribute task and conceal critical neurons
 - Making redundant path for critical information flow
 - Attackers needs **more bit flip** to degrade accuracy
 - □ No retraining is required
 - **Reduction in BFA success with minimal impact on accuracy**
 - **Compatibility** with other defenses

Thank you!

