
Forget and Rewire: Enhancing the Resilience of
Transformer-based Models against Bit-Flip Attacks

Najmeh Nazari, Hosein Makrani, Chongzhou Fang, Hossein Sayadi,
Setareh Rafatirad, Khaled N. Khasawneh, and Houman Homayoun

33rd USENIX Security
August 2024

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Transformer Models

1/19

Image

Transformer Models

2/19

q Linear layer

q Efficient (training & inference)
q Scalable

Vaswani, Ashish, and et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Transformer Models

2/19

q Linear layer

q Efficient (training & inference)

q Scalable

q Vulnerable to Bit Flip Attack

Can we use Linear layer to increase the
resilience of Transformers against BFAs?

Bit Flip Attack

3/19

X Y

Neural network: Y = F(X . W + b)

1001101

Stored weight
value in memory

0001101

Bit flip

Yao, Fan, and et all. "DeepHammer: Depleting the intelligence of deep neural networks through targeted chain of bit flips." In 29th
USENIX Security Symposium (USENIX Security 20), 2020.

Flow of Bit Flip Attack

4/19

Batch of
inputs

Model
Gradient
calculatio

n

Sort &
ranking

Desired
accuracy

drop?
Bit Flip
AttackAdversary

Success!Yes

No

Attacker goal: use minimum number of BF for degrading the accuracy

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Threat Model

5/19

q Assumptions about the Adversary

q The adversary has the capability to execute BFAs after model
deployment.

q Adversary can manipulate multiple bits of multiple parameters.

q Assumption of a white-box attack scenario (complete knowledge
of the original model's architecture and parameters).

1001101 0011100

Types of Attackers

6/19

q Basic Adversary

q Expert Adversary

q Oracle Adversary

Types of Attackers

7/19

Basic
Adversary

Expert
Adversary

Oracle
Adversary

Knowledge of
Defense

Access to gradient
on deployed model

Access to defense
configuration

Requires equivalent
model for BFA testing

Types of Attackers

7/19

Basic
Adversary

Expert
Adversary

Oracle
Adversary

Knowledge of
Defense

Access to gradient
on deployed model

Access to defense
configuration

Requires equivalent
model for BFA testing

Types of Attackers

7/19

Basic
Adversary

Expert
Adversary

Oracle
Adversary

Knowledge of
Defense

Access to gradient
on deployed model

Access to defense
configuration

Requires equivalent
model for BFA testing

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Existing Defenses

8/19

q Model Hardening

q Detection and Recovery

Existing Defenses

9/19

q Model Hardening

q Quantization
q Require retraining
q Degrades accuracy

He, Z., and et al. “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020

Existing Defenses

9/19

q Model Hardening

q Quantization

q Activation optimization
q Like ReLu, Not completely mitigate the BFA

He, Z., and et al. “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020

Jinyu Zhan., and et al. “Improving fault tolerance for reliable dnn using boundary-aware activation”, IEEE TCAD 2021

Existing Defenses

9/19

q Model Hardening
q Quantization

q Activation optimization

q Randomization
q Ageis: Additional classifier layers internally and dynamic exit

Jinyu Zhan., and et al. “Improving fault tolerance for reliable dnn using boundary-aware activation”, IEEE TCAD 2021

He, Z., and et al. “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020

Wang, J., and et al, “Aegis: Mitigating targeted bit-flip attacks against deep neural networks”, USENIX Security, 2023

Existing Defenses

10/19

q Detection and Recovery

q ECC
q Limitation in recovery and detection

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." IEEE TCAD, 2024.

Existing Defenses

10/19

q Detection and Recovery

q ECC

q NeuroPots
q Expert attacker can bypass it by setting threshold

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." IEEE TCAD, 2024.

Liu, Q., and et al, “NeuroPots: Realtime Proactive Defense against Bit-Flip Attacks in Neural Networks”, USENIX Security, 2023.

Honey
neurons

Inspiration

11/19

q Brain Rewiring
q Neurons that fire together wire together!

q Forget unimportant connections and Rewire them to robust the
important ones

We call this operation, Forget and Rewire or FaR.

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Forget and Rewire Configuration

12/19

Batch of
inputs

Model Gradient
calculation

Sort &
ranking

Developer

Forget and Rewire Configuration

12/19

Batch of
inputs

Model Gradient
calculation

Sort &
ranking

Developer

1- Critical neurons

2- Dead neurons FaR
Configuration

FaR CFG
applies during
deployment

Match dead neurons with critical ones

Applying FaR CFG

13/19

L 1

X1m1

m2

m3

X2

X3

W1

W2

W3

L 2

Y = f(𝚺XiWi + b)

f(x) = ReLU
n1

Y = f(X1W1 + X2W2 + X3W3 + b)
X1 > X3 > X2 = 0

à Y = f(X1W1 + X3W3 + b)

Sensitive weight : W1

Normal linear layer

Note: Connections’ thickness shows the
gradient value

Applying FaR CFG

13/19

L1

X1m1

m2

m3

X2

X3

W1

W3

L2

Y = f(𝚺XiWi + b)

f(x) = ReLU
n1

W1X1/2

X1/2

Y = f((X1/2)W1 + (X1/2)W1 + X3W3 + b)

à Y = f(X1W1 + X3W3 + b)

X3 > (X1/2) = (X1/2)

Sensitive weight : W3

Forget & Rewire q Forget m2’s connection

q Rewire W2 with W1

q Replace W2 value with W1

q Redistribute X1 activation to W2 and W1

q Preserve model’s functionality

Applying FaR CFG

13/19

L1

X1m1

m2

m3

X2

X3

W1

W3

L2

Y = f(𝚺XiWi + b)

f(x) = ReLU
n1

W1X1/2

X1/2

Y = f((X1/2)W1 + (X1/2)W1 + X3W3 + b)

à Y = f(X1W1 + X3W3 + b)

X3 > (X1/2) = (X1/2)

Sensitive weight : W3

Forget & Rewire q Concealing Critical Parameters

q Reducing the gradient value
q Redistributing task

q Increasing robustness

q Both W1 and W2 must be attacked

q Increases the cost of attack

FaR Flow

14/19

Batch of
inputs

Model Gradient
calculation

Sort &
ranking

Desired
robustness?

BFA
simulation

Developer Hardened Model

Yes

No

Forget & Rewire

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Experimental Setup

15/19

q Datasets used for evaluation
q ImageNet
q MNIST
q CIFAR-10/100
q Yelp review

q Models
q Custom ViTs (For MNIST, and CIFAR)
q google/vit − base − patch16 − 224
q dbmdz/bert − large − cased− finetuned−conll03−english

q Evaluation metrics
q Accuracy
q Robustness

Evaluation: Impact on Accuracy

16/19

With 10% FaR per layer

Trade off between Accuracy and Robustness

Evaluation: Robustness

17/19

With keeping same level of accuracy loss (2%)

Evaluation

18/19

q Storage and Time overhead

q Dropout and Pruning

q Adversarial example input attack

Please read the paper for detailed
evaluation and analysis

Outline
q Background and Problem Statement

q Threat Model

q Inspiration and Contribution

q Forget and Rewire

q Evaluation and Discussion

q Conclusion

Conclusion

19/19

q Advantages of FaR

q Redistribute task and conceal critical neurons

q Making redundant path for critical information flow

q Attackers needs more bit flip to degrade accuracy

q No retraining is required

q Reduction in BFA success with minimal impact on accuracy

q Compatibility with other defenses

Thank you!

