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Transformer Models
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q Linear layer

q Efficient (training & inference)
q Scalable

Vaswani, Ashish, and et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Transformer Models

2/19

q Linear layer

q Efficient (training & inference)

q Scalable

q Vulnerable to Bit Flip Attack

Can we use Linear layer to increase the 
resilience of Transformers against BFAs?



Bit Flip Attack
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X Y

Neural network: Y = F(X . W + b) 

1001101

Stored weight 
value in memory

0001101

Bit flip

Yao, Fan, and et all. "DeepHammer: Depleting the intelligence of deep neural networks through targeted chain of bit flips." In 29th 
USENIX Security Symposium (USENIX Security 20), 2020.



Flow of Bit Flip Attack
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Attacker goal: use minimum number of BF for degrading the accuracy
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Threat Model
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q Assumptions about the Adversary

q The adversary has the capability to execute BFAs after model 
deployment.

q Adversary can manipulate multiple bits of multiple parameters.

q Assumption of a white-box attack scenario (complete knowledge 
of the original model's architecture and parameters).

1001101 0011100



Types of Attackers

6/19

q Basic Adversary 

q Expert Adversary

q Oracle Adversary
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q Model Hardening

q Detection and Recovery



Existing Defenses
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q Model Hardening

q Quantization
q Require retraining
q Degrades accuracy

He, Z., and et al. “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020



Existing Defenses
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q Model Hardening

q Quantization

q Activation optimization
q Like ReLu, Not completely mitigate the BFA

He, Z., and et al. “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020

Jinyu Zhan., and et al. “Improving fault tolerance for reliable dnn using boundary-aware activation”, IEEE TCAD 2021



Existing Defenses
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q Model Hardening
q Quantization

q Activation optimization

q Randomization
q Ageis: Additional classifier layers internally and dynamic exit

Jinyu Zhan., and et al. “Improving fault tolerance for reliable dnn using boundary-aware activation”, IEEE TCAD 2021

He, Z., and et al. “Defending and harnessing the bit-flip based adversarial weight attack”, CVPR 2020

Wang, J., and et al, “Aegis: Mitigating targeted bit-flip attacks against deep neural networks”, USENIX Security, 2023
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q Detection and Recovery

q ECC 
q Limitation in recovery and detection

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." IEEE TCAD, 2024.



Existing Defenses
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q Detection and Recovery

q ECC 

q NeuroPots
q Expert attacker can bypass it by setting threshold

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." IEEE TCAD, 2024.

Liu, Q., and et al, “NeuroPots: Realtime Proactive Defense against Bit-Flip Attacks in Neural Networks”, USENIX Security, 2023.

Honey 
neurons



Inspiration 
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q Brain Rewiring
q Neurons that fire together wire together!

q Forget unimportant connections and Rewire them to robust the 
important ones  

We call this operation, Forget and Rewire or FaR.
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Forget and Rewire Configuration
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Batch of 
inputs

Model Gradient 
calculation

Sort & 
ranking

Developer

1- Critical neurons

2- Dead neurons FaR 
Configuration

FaR CFG 
applies during 
deployment 

Match dead neurons with critical ones



Applying FaR CFG
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L 1

X1m1

m2

m3

X2

X3

W1

W2

W3

L 2

Y = f(𝚺XiWi + b)

f(x) = ReLU
n1

Y =  f(X1W1 + X2W2 + X3W3 + b) 
X1 > X3 > X2 = 0 

à Y =  f(X1W1 + X3W3 + b) 

Sensitive weight : W1

Normal linear layer

Note: Connections’ thickness shows the 
gradient value
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X3 > (X1/2) = (X1/2) 

Sensitive weight : W3

Forget & Rewire q Forget m2’s connection

q Rewire W2 with W1

q Replace W2 value with W1

q Redistribute X1 activation to W2 and W1

q Preserve model’s functionality



Applying FaR CFG
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L1

X1m1

m2

m3

X2

X3

W1

W3

L2

Y = f(𝚺XiWi + b)

f(x) = ReLU
n1

W1X1/2

X1/2

Y =  f((X1/2)W1 + (X1/2)W1 + X3W3 + b) 

à Y =  f(X1W1 + X3W3 + b) 

X3 > (X1/2) = (X1/2) 

Sensitive weight : W3

Forget & Rewire q Concealing Critical Parameters

q Reducing the gradient value
q Redistributing task

q Increasing robustness

q Both W1 and W2 must be attacked

q Increases the cost of attack



FaR Flow
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Experimental Setup
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q Datasets used for evaluation 
q ImageNet
q MNIST
q CIFAR-10/100
q Yelp review

q Models
q Custom ViTs (For MNIST, and CIFAR)
q google/vit − base − patch16 − 224
q dbmdz/bert − large − cased− finetuned−conll03−english

q Evaluation metrics
q Accuracy
q Robustness



Evaluation: Impact on Accuracy
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With 10% FaR per layer

Trade off between Accuracy and Robustness



Evaluation: Robustness
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With keeping same level of accuracy loss (2%)



Evaluation
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q Storage and Time overhead

q Dropout and Pruning

q Adversarial example input attack

Please read the paper for detailed 
evaluation and analysis 
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Conclusion
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q Advantages of FaR

q Redistribute task and conceal critical neurons

q Making redundant path for critical information flow

q Attackers needs more bit flip to degrade accuracy

q No retraining is required

q Reduction in BFA success with minimal impact on accuracy

q Compatibility with other defenses



Thank you!


