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Transformer Models
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Transformer Models

d Linear layer

O Efficient (training & inference)
d Scalable
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Transformer Models

d Linear layer
O Efficient (training & inference)

d Scalable

d  Vulnerable to Bit Flip Attack

)

Can we use Linear layer to increase the
resilience of Transformers against BFAs?
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Bit Flip Attack

Stored weight
value in memory Bit flip RowHammer

Attacking DDR4 DRAM Chips
1001101 —\—+ 0001101

output layer

input layer
hidden layer

Neural network: Y =F(X. W + b)

Yao, Fan, and et all. "DeepHammer: Depleting the intelligence of deep neural networks through targeted chain of bit flips." In 29th
USENIX Security Symposium (USENIX Security 20), 2020.
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Flow of Bit Flip Attack

Desired
Gradient  Sort & Bit Flip accuracy
Adv Batch of 5
ersary Model calculatio  ranking Attack drop?
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Attacker goal: use minimum number of BF for degrading the accuracy
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Threat Model

d Assumptions about the Adversary

d The adversary has the capability to execute BFAs after model
deployment. or

Run Queue CPU

R =Ready to Run
0=0nCPU

d Adversary can manipulate multiple bits of multiple parameters.

1001101 + 0011100

d  Assumption of a white-box attack scenario (complete knowledge
of the original model's architecture and parameters).

®
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Types of Attackers

1 Basic Adversary
1 Expert Adversary

d Oracle Adversary
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Types of Attackers

Basic Expert Oracle
Adversary Adversary Adversary

Knowledge of
Defense

Access to defense
configuration

Access to gradient
on deployed model

Requires equivalent
model for BFA testing
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Existing Defenses
J Model Hardening

1 Detection and Recovery
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Existing Defenses

L Model Hardening

0 Quantization
L Require retraining
O Degrades accuracy
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Existing Defenses

d Model Hardening

d  Quantization

d  Activation optimization
1 Like RelLu, Not completely mitigate the BFA
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Existing Defenses

d Model Hardening

d  Quantization

d  Activation optimization

d Randomization

O Ageis: Additional classifier layers internally and dynamic exit
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Existing Defenses

O Detection and Recovery IO EE
d ECC
O Limitation in recovery and detection I L

Li, Wei, and et al. "Improving DRAM Reliability Using a High Order Error Correction Code." IEEE TCAD, 2024.
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Existing Defenses

1 Detection and Recovery
d ECC

d NeuroPots
1 Expert attacker can bypass it by setting threshold

Layer 1 Layer2 Layerl Layer L+1
I:l Output
D 1]
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D —
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Fault Detection Fault Detection J:
I:l and Mitigation and Mitigation

Inference flow of normal layers
Inference flow of layers embedded trapdoors
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Inspiration

1 Brain Rewiring
1 Neurons that fire together wire together!

d Forget unimportant connections and Rewire them to robust the
Important ones

We call this operation, Forget and Rewire or FaR.
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Forget and Rewire Configuration

Developer Batchof  Model Gradient Sort.&
inputs calculation ranking
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Forget and Rewire Configuration
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Applying FaR CFG

Normal linear layer

L2

Y = f(ZX|W| + b)
f(x) = ReLU

L1
(m)

Note: Connections’ thickness shows the

gradient value
X1 > X3 > X2 =0

Y = f(X1W1 + X2W2 + X3W3 + b)
9 Y = f(X1W1 + X3W3 + b)

Sensitive weight : W, 13/19



Applying FaR CFG

Forget & Rewire

L1 2

Y = f(lewl + b)
f(x) = RelLU

X3> (X4/2) = (X1/2)
Y = f((X1/2)W1+ (X1/2)W1+ X5W;3+ b)

2Y= f(X1W1 + XsW3 + b)

Sensitive weight : W,

I I e

Forget m2’s connection

Rewire W2 with W1

Replace W2 value with W1

Redistribute X1 activation to W2 and W1

Preserve model’s functionality

13/19



Applying FaR CFG

Forget & Rewire d Concealing Critical Parameters

L1 12 d Reducing the gradient value
| 0 Redistributing task

Y = f(lewl + b)
f(x) = RelLU  Increasing robustness

d Both W1 and W2 must be attacked

d Increases the cost of attack

X3> (X4/2) = (X1/2)
Y = f((X1/2)W1+ (X1/2)W1+ X5W;3+ b)

2Y= f(X1W1 + XsW3 + b)

Sensitive weight : W,
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FaR Flow
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Experimental Setup

(d Datasets used for evaluation
d  ImageNet
d MNIST

d CIFAR-10/100
d Yelp review

1 Models
d Custom ViTs (For MNIST, and CIFAR)
O google/vit — base — patch16 — 224
d dbmdz/bert — large — cased- finetuned—conll03—-english

d Evaluation metrics
d  Accuracy
J Robustness
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Evaluation: Impact on Accuracy

w w B
o w o
A\

N
v

With 10% FaR per layer

N
o

=
(O]

(%) ss07 Adeunddy abeiany

(%))

Trade off between Accuracy and Robustness

Dataset w/o FaR :,w FaRi Ageis | NeuroPots
MNIST 98.3 1 0.1 | — —
CIFAR-10 96.1 I -1.14 1| -1.26 -1.0
CIFAR-100 92.8 : -1.35 ' -1.96 —
ImaegNet 884 |, -1.97 | — -1.3
Yelp review Base |1 -1.82 || — —
N7

16/19




Evaluation: Robustness
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Evaluation

1 Storage and Time overhead
1 Dropout and Pruning

d Adversarial example input attack

Please read the paper for detailed

evaluation and analysis ~
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Conclusion

d Advantages of FaR

1 Redistribute task and conceal critical neurons

1 Making redundant path for critical information flow
Attackers needs more bit flip to degrade accuracy
No retraining is required

Reduction in BFA success with minimal impact on accuracy

o O 0O O

Compatibility with other defenses
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Thank youl!




