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⚫The leakage often used in attacks includes:
• Access Pattern, which reveals the identities of matched documents.

• Volume Pattern, which reveal the number of matched documents.

• Search Pattern, which indicates whether two queries are identical.
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⚫Liu et al. [LZWT14] use the query frequency (from the search pattern)
to match queries with keywords.

Previous Similar-data Attacks
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⚫Liu et al. [LZWT14] use the query frequency (from the search pattern)
to match queries with keywords.

⚫Pouliot et al. [PW16], Damie et al. [DHP21], and Oya et al. [OK23]
use the query co-occurrence to match queries with keywords.

• The query co-occurrence is the probability of two queries shown in the same
document. It could be deduced from the search pattern and access pattern.
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⚫1. A small number of cracked queries can pose a significant threat to
the security of other queries.

• Damie et al. [DHP21] proposed the refined score attack that achieves around
85% accuracy in recovering all queries by utilizing only 10 known queries.

Our Observations



⚫1. A small number of cracked queries can pose a significant threat to
the security of other queries.

⚫2. Queries with a high volume/frequency are much easier to recover
than others.

• In a database, the volume and frequency of keywords follows Zipf’s law.

• Queries with higher volume or frequency display larger disparities, which
consequently makes it easier for attackers to recover those queries.

Our Observations



⚫A simple attack, which just matches the queries with keywords that
have the closest volume and frequency, has 75% accuracy on the
HVHF quadrant.

Our Observations
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Ⅱ. Our attack



⚫Identify and recover the distinctive queries:

• Calculate the distance between all queries and their nearest neighbors, and 
select the first BaseRec queries with biggest distance as the distinctive queries.

• Match the BaseRec queries to the keywords that have the closest volume and 
frequency.

Jigsaw - Module 1

Queries Keywords

Distinctive Queries
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⚫Remove some ill-matched queries:

• We check whether the results of module 1 is good or not. The good ones should 
also match in the co-occurrence relations. We keep ConfRec matched queries in 
this module.

Jigsaw - Module 2
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⚫Recover all queries based on the output of module 2:

Jigsaw - Module 3

Treat the output of module 2 as known matches.

Based on the known queries, we calculate the 

score between each query and each keyword.

Based on the score, we calculate the certainty of each query.

Get the k most certain queries and match them to the 

keywords. Treat those matches as known matches.



Jigsaw – Experimental Results

Figure: Jigsaw vs RSA[DHP21] vs IHOP[OK23] vs Sap[OK21] vs 

Graphm[PW16] in accuracy and runtime.



Jigsaw – Experimental Results

Figure: Jigsaw vs IHOP in accuracy with the same time limits.



Against Countermeasures

Figure: Jigsaw vs RSA vs IHOP in accuracy against the padding in [CGPR15].

⚫We pad the attacker’s database with the same method as the client to 
minimizing the disparity between the similar data and the padded data.
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Against Countermeasures

Figure: Jigsaw vs RSA vs IHOP in accuracy against the obfuscation in [CLRZ18].

⚫We use the similar adaptation as [OK23] to all the attacks.
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Ⅲ. Conclusion



Conclusion

⚫We propose a new similar-data attack, Jigsaw. Some distinctive
queries could threaten the whole system due to an attack like Jigsaw.

⚫Jigsaw could bypass some countermeasures and still has high
accuracy due to that the countermeasures do not protect the distinctive
queries well.

⚫An effective defense should hide the distinctive queries.



Thank you for listening!

Code available: https://github.com/JigsawAttack/JigsawAttack
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→ niehao@hust.edu.cn

→ viviawangwei@hust.edu.cn 

→ xupeng@hust.edu.cn


