Inf2Guard: An Information-Theoretic Framework for Learning Privacy-Preserving Representations against Inference Attacks

 \boldsymbol{S} ayedeh Leila Noorbakhsh 1,* , Binghui Zhang 1,* , Yuan Hong 2 , Binghui Wang 1

Machine learning

Machine learning As a service

Hazard: Privacy leakage

Membership Inference Attacks (MIA)

Data Reconstruction Attack (DRA)

prediction

Defense against inference attacks using Inf2Guard

• Can we design a unified privacy protection framework against these inference attacks, MIA, PIA and DRA, that also **maintain utility?**

• Under the framework, can we further **theoretically understand** the **utility-privacy tradeoff** and the **privacy leakage against the inference attacks?**

Threat Model

Defender objective:

• Learning data representations that are resistant to inference attacks

Inf2Guard

- Inf2Guard is inspired by **information theory** and designs customized mutual information (MI) objectives for each inference attack.
- Goal 1: Privacy protection
- Goal 2: Utility preservation.

Introduction to Mutual Information (MI)

- It measures the **amount of information** that one random variable X provides about another random variable Y .
- **MI quantifies** the reduction in uncertainty about one variable due to the knowledge of the other.
- **Mathematically**, MI is expressed as:

$$
I(X;Y) = H(X) + H(Y) - H(X,Y)
$$

$$
I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)
$$

• **Applications:** Used in feature selection, clustering, **privacy-preserving mechanisms and inference attack defenses.**

How to defense against this MIA?

- Decrease the utility
	- DP-SGD
	- DP-Encoder
- **Does not** have privacy guarantees
	- AdvReg
	- NeuGuard
	- \bullet …

Inf2Guard against MIAs

• Goal 1: Membership protection

Very Challenging to solve these two MI objectives. Calculating an MI between arbitrary variables is infeasible.

defender learns the representation $r = f(x)$ private membership u member Data 50% Non-member ϵ

• Goal 2: Utility preservation

 $\max_{f} I(y; \mathbf{r}|u=1),$

 $\min_{\mathbf{r}} I(\mathbf{r};u),$

How to address intractable MI calculation?

- Inspired by the **MI neural estimation,** which transfers the intractable MI calculations to the **tractable variational MI bounds.**
- Capable of parameterizing each bound with **a (deep) neural network.**
- Train neural networks to approximate the **true MI** and **learn representations** against the inference attacks.

Estimating MI via tractable bounds

 $[q_w(u|r)]$ is an auxiliary posterior distribution of $p(u|r)$

• Minimizing the upper bound MI in Equation

 $I(r; u) \leq I_{\nu CLUB}(r; u) = E_{p(r; u)}[log q_{\psi}(u|r)] - E_{p(r)p(u)}[log q_{\psi}(u|r)]$ тіп $_\Psi E_{p(r;u)}[log\ (u|r)]$ — $E_{p(r)p(u)}[logq_\psi(u|r)]$ \Leftrightarrow max $_{\Psi}E_{p(r;u)}[log q_{\psi}(u|r)]$

• Goal 1: privacy protection as a min-max objective function:

 $E_{p(r;u)}\lfloor log q_{\bm{\psi}}(u|r)\rfloor$ is irrelevant to $\Psi.$

 $min_f\,min_{\Psi} I_{\nu CLUB}(r;u) \Longleftrightarrow min_f\,max_\Psi\!_{p(r;u)}\lfloor log q_\psi(u|r)$

Adversarial game between an adversary q_{ψ}) and encoder f

Estimating MI via tractable bounds

• Maximizing the lower bound MI in Equation

 q_{Ω} is an arbitrary auxiliary posterior distribution. Predict the training data label y from the representation r

$$
I(y; r|u = 1) = H(y|u = 1) - H(y|r, u = 1)
$$

= $H(y|u = 1) + E_{p(y,r,u)} [log^{q}Q(y|r, u = 1)]$
 $\geq H(y|u = 1) + E_{p(y,r,u)} [log^{q}Q(y|r, u = 1)]$

• Goal 2: utility preservation can be rewritten as max-max objective function:

$$
max_f I(y; r | u = 1) \Longleftrightarrow max_f max_{\Omega} E_{p(y,r,u)} [log^q \Omega^{(y|r, u = 1)}]
$$

Cooperative game between the **encoder f** and **qΩ**

Objective function of Inf2Guard against MIAs.

 $\lambda \in [0,1]$ tradeoffs privacy and utility

• Our objective function of learning privacy-preserving representations against MIAs: $max_f(\lambda \ min_{\Psi} - E_{p(x,u)}\big[log^{q\Psi(u|f(x)}\big] {\hspace{0.85pt}{+}} (1-\lambda) max_{\Omega}\, E_{p(x,y,u)}\big[log^{q\Omega(y|f(x),y=1)}\big]$

Implementation in practice:

- **Three parameterized neural networks**
- **Encoder f**
- Membership protection network $\boldsymbol{g}_{\boldsymbol{\psi}}$
- Utility preservation network \bm{h}_Ω

Inf2Guard- Utility Training

Inf2Guard-Attack Training

Theoretical Results

Theorem 1 (Privacy Leakage Bound)

• **Key Result**: The probability that an MIA correctly infers membership u is bounded by:

$$
Pr(A_{MIA}(r) = u) \le 1 - \frac{H(u|r)}{2log_2^{\frac{6}{H(u|r)}}}
$$

- **Implication**: A larger $H(u|r)$ (conditional entropy) means a lower MIA accuracy, indicating better privacy protection.
- **Goal:**
	- **Objective**: Maximize $H(u|r)$ by minimizing $I(u;r)$ (Mutual Information), thereby reducing MIA effectiveness.

Experimental results- MIA

• **Utility-privacy results**

• **TPR vs FPR of Inf2Guard against LiRA**

CIFAR10

Experimental results- MIA

• 3D t-SNE embeddings results on the learnt representation of on CIFAR10.

Experimental results - PIA

• **Comparing with the DP-based defense** • **3D t-SNE embeddings results**

Experimental results - DRA

Conclusion

- **Inf2Guard:** A unified information-theoretic framework for learning privacy-preserving representations.
	- Membership Inference, Property Inference, Data Reconstruction
- **Guaranteed privacy leakage**
- **Guaranteed utility-privacy tradeoff**
- **State-of-the-art of the utility-privacy tradeoff**

Contribution

• Contact us:

snoorbakhsh@hawk.iit.edu bzhang57@hawk.iit.edu yuan.hong@uconn.edu bwang70@iit.edu

• Big thanks to our supporter:

