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Machine learning 
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Machine learning As a service

Training API

Data

Prediction API
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Hazard: Privacy leakage

Can I infer private information 
from the model’s prediction?
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Membership Inference Attacks (MIA)
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Property Inference Attack(PIA)
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Data Reconstruction Attack (DRA)
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Defense against inference attacks using Inf2Guard 

•  Can we design a unified privacy protection framework against these inference attacks, 
MIA, PIA and DRA, that also maintain utility? 

• Under the framework, can we further theoretically understand the utility-privacy 
tradeoff and the privacy leakage against the inference attacks?
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Threat Model
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Attacker knowledge:
• Knowledge of Data Distribution
• No Access to Internal Encoder

Defender objective:
• Learning data representations that 

are resistant to inference attacks

Task learner objective:
• develop an accurate 

classification model

Attacker objective:
• seeks to extract sensitive 

information from r



Inf2Guard

• Inf2Guard is inspired by information theory and designs customized mutual 
information (MI) objectives for each inference attack.

• Goal 1: Privacy protection
• Goal 2: Utility preservation.
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Introduction to Mutual Information (MI)

• It measures the amount of information that one random variable  𝑋 provides about another 
random variable 𝑌.

• MI quantifies the reduction in uncertainty about one variable due to the knowledge of the other.

• Mathematically, MI is expressed as:

   𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌

    𝐼 𝑋; 𝑌 = σ𝑥∈𝑋 σ𝑦∈𝑌 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)  

• Applications: Used in feature selection, clustering, privacy-preserving mechanisms and 
inference attack defenses.
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How to defense against this MIA? 

• Decrease the utility
• DP-SGD
• DP-Encoder

• Does not have privacy 
guarantees
• AdvReg
• NeuGuard
• …
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Inf2Guard against MIAs

• Goal 1: Membership protection

•  Goal 2: Utility preservation

defender learns the 

representation r = f(x)

private membership u

14

Very Challenging to solve these two MI 
objectives. 
Calculating an MI between arbitrary 
variables is infeasible.



How to address intractable MI calculation?

• Inspired by the MI neural estimation, which transfers the intractable MI 
calculations to the tractable variational MI bounds.

• Capable of parameterizing each bound with a (deep) neural network.

• Train neural networks to approximate the true MI and learn representations against 
the inference attacks.
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Estimating MI via tractable bounds

• Minimizing the upper bound MI in Equation

 𝐼(𝑟; 𝑢) ≤ 𝐼𝑣𝐶𝐿𝑈𝐵 𝑟; 𝑢 =  𝐸𝑝(𝑟;𝑢) 𝑙𝑜𝑔𝑞𝜓(𝑢|𝑟)  −𝐸𝑝 𝑟 𝑝(𝑢) 𝑙𝑜𝑔𝑞𝜓(𝑢|𝑟)

𝑚𝑖𝑛Ψ 𝐸𝑝(𝑟;𝑢) 𝑙𝑜𝑔 (𝑢|𝑟)  −𝐸𝑝 𝑟 𝑝(𝑢) 𝑙𝑜𝑔𝑞𝜓(𝑢|𝑟)

⟺ 𝑚𝑎𝑥Ψ𝐸𝑝(𝑟;𝑢) 𝑙𝑜𝑔𝑞𝜓(𝑢|𝑟)

• Goal 1: privacy protection as a min-max objective function:

𝑚𝑖𝑛𝑓 𝑚𝑖𝑛Ψ𝐼𝑣𝐶𝐿𝑈𝐵 𝑟; 𝑢 ⟺ 𝒎𝒊𝒏𝒇 𝒎𝒂𝒙𝜳𝑬𝒑(𝒓;𝒖) 𝒍𝒐𝒈𝒒𝝍(𝒖|𝒓)
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𝑞𝜓(𝑢|𝑟) is an auxiliary posterior distribution of 𝑝 𝑢 𝑟

𝐸𝑝(𝑟;𝑢) 𝑙𝑜𝑔𝑞𝜓(𝑢|𝑟)  is irrelevant to Ψ.

Adversarial game between an adversary 𝒒𝝍) and encoder f



Estimating MI via tractable bounds
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• Maximizing the lower bound MI in Equation

𝐼 𝑦; 𝑟 𝑢 = 1 = 𝐻 𝑦 𝑢 = 1 − 𝐻 𝑦 𝑟, 𝑢 = 1

=  𝐻 𝑦 𝑢 = 1 + 𝐸𝑝(𝑦,𝑟,𝑢) 𝑙𝑜𝑔
𝑞Ω 𝑦 𝑟, 𝑢 = 1

≥ 𝐻 𝑦 𝑢 = 1  + 𝐸𝑝(𝑦,𝑟,𝑢) 𝑙𝑜𝑔
𝑞Ω 𝑦 𝑟, 𝑢 = 1

• Goal 2: utility preservation can be rewritten as max-max objective function:

𝑚𝑎𝑥𝑓𝐼 𝑦; 𝑟 𝑢 = 1  ⟺ 𝑚𝑎𝑥𝑓 𝑚𝑎𝑥Ω 𝐸𝑝(𝑦,𝑟,𝑢) 𝑙𝑜𝑔
𝑞Ω 𝑦 𝑟, 𝑢 = 1

𝑞Ω is an arbitrary auxiliary posterior 
distribution. Predict the training data label 
y from the representation r

Cooperative game between the encoder f and qΩ



Objective function of Inf2Guard against MIAs.

• Our objective function of learning privacy-preserving representations against MIAs:

𝑚𝑎𝑥𝑓(𝜆 𝑚𝑖𝑛Ψ − 𝐸𝑝(𝑥,𝑢) 𝑙𝑜𝑔𝑞Ψ(𝑢|𝑓(𝑥) +(1 − 𝜆)𝑚𝑎𝑥Ω 𝐸𝑝(𝑥,𝑦,𝑢) 𝑙𝑜𝑔𝑞Ω(𝑦|𝑓 𝑥 ,𝑦=1)

Implementation in practice:
• Three parameterized neural networks 
• Encoder f 
• Membership protection network 𝒈𝝍

• Utility preservation network 𝒉Ω
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𝜆 ∈ [0,1] tradeoffs privacy and 
utility



Inf2Guard- Utility Training 
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Training sample Encoder Utility Network Predictions
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Inf2Guard-Attack Training

20

Training samples Frozen Encoder Attack Network

member

Non-
member

Attack prediction

Testing samples
Strong Attack:

• The attacker knows the exact 

membership protection 

network.



Inf2Guard-Defense
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Attacker Network
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• The training/testing set in the 

defense was used in the attacker 
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Theoretical Results

Theorem 1 (Privacy Leakage Bound)
• Key Result: The probability that an MIA correctly infers membership u is bounded by:

Pr 𝐴𝑀𝐼𝐴 𝑟 = 𝑢 ≤ 1 −
𝐻(𝑢|𝑟)

2𝑙𝑜𝑔2

(
6

𝐻 𝑢 𝑟 )

• Implication: A larger 𝐻(𝑢|𝑟) (conditional entropy) means a lower MIA accuracy, indicating 
better privacy protection.

• Goal: 
• Objective: Maximize 𝐻(𝑢|𝑟) by minimizing 𝐼(𝑢; 𝑟)(Mutual Information), thereby reducing 

MIA effectiveness.
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Experimental results- MIA

• Utility-privacy results

• TPR vs FPR of Inf2Guard against 
LiRA
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Experimental results- MIA
• 3D t-SNE embeddings results on the learnt representation of on CIFAR10.
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CIFAR10



Experimental results - PIA
• Comparing with the DP-based defense • 3D t-SNE embeddings results
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Experimental results - DRA
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 CIFAR10

           Fix Utility: 78%  CIFAR100

             Fix Utility: 47%



Conclusion

• Inf2Guard: A unified information-theoretic framework for learning privacy-preserving 
representations.
• Membership Inference, Property Inference, Data Reconstruction 

• Guaranteed privacy leakage 

• Guaranteed utility-privacy tradeoff 

• State-of-the-art of the utility-privacy tradeoff
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Contribution

• Contact us:
snoorbakhsh@hawk.iit.edu
bzhang57@hawk.iit.edu
yuan.hong@uconn.edu

bwang70@iit.edu

• Big thanks to our supporter:
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