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Learning Privacy-Preserving Representations against
Inference Attacks

Sayedeh Leila Noorbakhsh'*, Binghui Zhang'*, Yuan Hong?, Binghui Wang *




Machine learning
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Machine learning As a service
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Hazard: Privacy leakage
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Can |l infer private information
from the model’s prediction?




Membership Inference Attacks (MIA)

Healthcare Data
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Consumer Behavior Analysis

Property Inference Attack(PIA)

| Income<50k”0”
Income>50k”1”

private labels are in range

[0.2,0.5]

Training data

classification
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Data Reconstruction Attack (DRA)
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Defense against inference attacks using Inf2Guard

* Can we design a unified privacy protection framework against these inference attacks,
MIA, PIA and DRA, that also maintain utility?

* Under the framework, can we further theoretically understand the utility-privacy
tradeoff and the privacy leakage against the inference attacks?



Defender objective:

Th reat MOdel * Learning data representations that

are resistant to inference attacks

defender(Data\
owner/ Trusted Rep,r
Service
Provider)
Encoder fy

/

\ 4

Task learner objective:
* develop an accurate
classification model

Attacker objective:
* seeks to extract sensitive
information from r

Attacker knowledge:
* Knowledge of Data Distribution
* No Accessto Internal Encoder
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Inf2Guard

* Inf2Guard is inspired by information theory and designs customized mutual
information (Ml) objectives for each inference attack.

* Goal 1: Privacy protection
e Goal 2: Utility preservation.
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Introduction to Mutual Information (Ml)

It measures the amount of information that one random variable X provides about another
random variable Y.

MI quantifies the reduction in uncertainty about one variable due to the knowledge of the other.
Mathematically, Ml is expressed as:

I(X;Y) =HX) + HY) —H(X,Y)

( p(x,y) )
I(X;Y) = Xxex ZyEYp(xr y)log\PXr®)

Applications: Used in feature selection, clustering, privacy-preserving mechanisms and
inference attack defenses.
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How to defense against this MIA?

* Decrease the utility
 DP-SGD
* DP-Encoder

* Does not have privacy
guarantees
* AdvReg
* NeuGuard
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Inf2Guard against MIAs

* Goal 1: Membership protection

min/(r;u),
; (r;u)

Very Challenging to solve these two M
objectives.

Calculating an Ml between arbitrary
variables is infeasible.

e Goal 2: Utility preservation

m}:}xf(y;ﬂu: 1),

defender learns the
representation r = f(x)
private membership u

Mon-member

''''''




How to address intractable MI calculation?

* Inspired by the Ml neural estimation, which transfers the intractable Ml
calculations to the tractable variational Ml bounds.

* Capable of parameterizing each bound with a (deep) neural network.

* Train neural networks to approximate the true Ml and learn representations against
the inference attacks.

15



Estimating Ml via tractable bounds

[qd, (u|r)]is an auxiliary posterior distribution of p(u|r)

* Minimizing the upper bound Ml in Equation
I(r;u) < Lyepyp (1) = Eparn [10gqy (ulr)] —Epeopay [logay (ulr))]
ming Epayllog w|r)] —Epeypan[logay (ulr)]
& maxyEp i) [logq¢ (u|r)]

. . . . . . E | lo u|r)|isirrelevantto V.
« Goal 1: privacy protection as a min-max objective function: prao 109y ()]

ming minglycpyp(r; u) © ming maxyE .| logqy(u|r)]

Adversarial game between an adversary q,) and encoder f

16



Estimating Ml via tractable bounds

qq is an arbitrary auxiliary posterior

° Maximizing the lower bound Ml in Equation distribution. Predict the training data label
y from the representationr

I(y;rlu=1) =Hlu=1)-H(y|r,u=1)

| s
= H(ylu = 1)+ Epgyrap [log® @V = 1)

>Hylu=1)+ Epyruw -lquQ(y“ﬂ'u = 1)
* Goal 2: utility preservation can be rewritten as max-max objective function:

yu=1
maxfl(y; rlu=1) < maxg maxqy Epcyru ’ZOQQQ(YIT u )i

Cooperative game between the encoder f and qQ
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Objective function of Inf2Guard against MIAs.

A €[0,1] tradeoffs privacy and
utility

* Our objective function of learning privacy-preserving representations against MIAs:

maxy (A ming — Ep(y[log?*Y M O )+(1 — Aymaxq Epxy [log 12OV @y=D]

Implementation in practice:

* Three parameterized neural networks
* Encoderf

* Membership protection network g,
 Utility preservation network h(
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Inf2Guard- Utility Training

Training

Testing

Training sample

Testing sample

Encoder Utility Network

ﬁ\ﬁlii—lll‘n‘-—

Predictions
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Inf2Guard-Attack Training

Frozen Encoder Attack Network

Training samples

e

Attack prediction

* member
7S —in =
member
Strong Attack:

Testing samples « The attacker knows the exact
membership protection
network.
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Strong Attack:
InNf2Guard-Defense » The training/testing set in the

defense was used in the attacker

- : training/testing process
Training samples Pretrained Encoder

Attacker Network
| member
|
Non
member
Utility Network

Testing samples

m?x (kmqi’n — p(IEu) log qw (u| f(x))]

n
»

H1-Mmgx B [logga0lf(x.u=1))
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Theoretical Results

Theorem 1 (Privacy Leakage Bound)
* Key Result: The probability that an MIA correctly infers membership u is bounded by:

H(u|r)
6

Crenray)
2logZH(u|r)

* Implication: A larger H(u|r) (conditional entropy) means a lower MIA accuracy, indicating
better privacy protection.

Pr(Ayia(r) =u) <1-—

* Goal:
* Objective: Maximize H(u|r) by minimizing I (u; r)(Mutual Information), thereby reducing
MIA effectiveness.
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Experimental results- MIA « TPRvs FPR of Inf2Guard against
LiRA

* Utility-privacy results . ROC Curve
0 78.9% 70.1% .
= 10-?
025 782% 55.9% =
£
w 1073
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— A=0, AUC= 0.854

A=0.25, AUC=0.750
10744

075 772% 51.1% — =03, AUC=0.667

— A=0.75, AUC=0.545
— A=1, AUC= 0.525

1 20% 50% ey = 1 T0°

False Positive Rate

CIFAR10
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Experimental results- MIA

* 3D t-SNE embeddings results on the learnt representation of on CIFAR10.
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Utility w. defense (77.2%) MIA Acc w. defense (51.1%)

CIFAR10
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Experimental results - PIA

 Comparing with the DP-based defense

Defense Census

Utility PIA Acc
DP-encoder 52% 34%
Inf?Gaurd 76% 34%

3D t-SNE embeddings results

(a) Utlity w/o. defense (83%)  (b) Attack acc. w/o. defense (52%)

-100

100

(c) Utility w. defense (80%) (d) Attack acc. w. defense (19%)
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Experimental results - DRA

(a) Raw images (b) No defense

CIFAR10
Fix Utility: 78%

(c) DP

(d) InflGuard

(a) Raw images (b) No defense

CIFAR100
Fix Utility: 47%

(c) DP

(d) Inf2Guard
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Conclusion

Inf2Guard: A unified information-theoretic framework for learning privacy-preserving
representations.

* Membership Inference, Property Inference, Data Reconstruction
Guaranteed privacy leakage
Guaranteed utility-privacy tradeoff

State-of-the-art of the utility-privacy tradeoff
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