Al Psychiatry: Forensic Investigation of Deep Learning Networks in Memory Images

David Oygenblik, Carter Yagemann, Joseph Zhang, Arianna Mastali, Jeman Park, Brendan Saltaformaggio

<u>davido@gatech.edu</u> davidoygenblik.github.io

ML Model Investigation

ML Model Investigation

Attackers

Detective Pika to the rescue!...

ML Model Investigation

"Lets go DL model vetting tools!"

Too many suspects...

Can be **thousands** of tensors in memory!

Tensor ... ••• $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ ••• $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ Tensor ••• ••• ••• ••• ••• Tensor ••• ••• $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$... $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$... $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ Tensor ••• ••• $\bullet \bullet \bullet$... $\bullet \bullet \bullet$ Tensor ••• . • • • ••• ••• $\bullet \bullet \bullet$... ••• $\bullet \bullet \bullet$

DL process heap

⁻ A worried pika

A problem!

Too many suspects...

Can be **thousands** of tensors in memory!

Tensors with matching attributes can exist!

Optimizers and layer activations exist....

Tensors can be distributed across either the CPU or GPU?

AiP: Feedback Driven Tensor Recovery

DL process heap

		Tensor	Tensor	$ \left\{ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix} \right\} $	Tensor	Tensor	$ \left\{ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix} \right\} $	Tensor	Tenso {
		$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tensor	Tensor	$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tensor	Tensor	$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tenso
Tensor	$ \left\{ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix} \right\} $	Tensor	Tensor	$ \left\{ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix} \right\} $	Tensor	Tensor	$ \left\{ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{smallmatrix} \right\} $	Tensor	Tenso
$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tensor	Tensor {••• •••}	Tensor	Tensor	Tensor {••• •••}	Tensor	Tensor	$ \left\{ \begin{matrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{matrix} \right\} $	Tenso
Tensor	$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tensor	Tensor	$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tensor	Tensor	$ \begin{cases} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{cases} $	Tensor	Tenso

⁻ An Inquisitive Pika

AiP: Feedback Driven Tensor Recovery

Key insights:

٠

One model node = Two tensors (i.e. conv = activation + bias) Feedback driven tensor recovery!

- An inquisitive Pika

AiP: Model Rehosting and Reuse

Recovered model tensors

Solving the Case!

Pika can finally vet the model!

Experiment Setup

Models: 30 total models deployed.
5 Models deployed across 3
versions of PyTorch and
TensorFlow (2 frameworks).
Datasets: Models trained on LISA,
CIFAR10, IMDB datasets.

AiP Input: CPU/GPU memories for each of the 30 model deployments.

Shown here: 10 models from most recent frameworks, more in the paper

	•		
romouvorle	Weights F		
	#	% Acc	# GPU Purs
ensorFlow	94M	100.0	940
ensorFlow	21M	100.0	145
ensorFlow	6M	100.0	268
ensorFlow	16M	100.0	34
ensorFlow	3M	100.0	14
PyTorch	60M	100.0	777
PyTorch	3M	100.0	137
PyTorch	6M	100.0	268
PyTorch	16M	100.0	34
PyTorch ,	5M	100.0	11
	ramework ensorFlow ensorFlow ensorFlow ensorFlow ensorFlow PyTorch PyTorch PyTorch PyTorch PyTorch	Weights Framework#ensorFlow94MensorFlow21MensorFlow6MensorFlow16MensorFlow3MPyTorch60MPyTorch3MPyTorch6MPyTorch16MPyTorch5M	Weights Recovered $\#$ % Acc ensorFlow 94M 100.0 ensorFlow 21M 100.0 ensorFlow 6M 100.0 ensorFlow 6M 100.0 ensorFlow 6M 100.0 ensorFlow 16M 100.0 PyTorch 60M 100.0 PyTorch 6M 100.0 PyTorch 6M 100.0 PyTorch 6M 100.0 PyTorch 6M 100.0 PyTorch 5M 100.0

AiP Recovery

Model Recovery

Models with upwards of **94** M weights are recovered with **100%** accuracy.

100% accuracy guaranteed at inference by graph guided recovery.

All Kelovely					
Model	Fromowork	Weights]	# CDI Dtro		
widder	FIGHICWOIK	#	% Acc	# 01 0 1 115	
Resnet152v1	TensorFlow	94M	100.0	940	
SSD- MobileNetV1	TensorFlow	21M	100.0	145	
MobileNetV2	TensorFlow	6M	100.0	268	
VGG16	TensorFlow	16M	100.0	34	
BD-LSTM	TensorFlow	3M	100.0	14	
Resnet152v1	PyTorch	60M	100.0	777	
MobileNetV1	PyTorch	3M	100.0	137	
MobileNetV2	PyTorch	6M	100.0	268	
VGG16	PyTorch	16M	100.0	34	
BD-LSTM	PyTorch	5M	100.0	11	

AiD Docovory

Model Recovery

Models with upwards of **94** M weights are recovered with **100%** accuracy.

100% accuracy guaranteed at inference by graph guided recovery.

GPU tensors (as many as **940** and as low as **11**) recovered successfully.

		leeoverj		-
Madal	Energy and	Weights I		
Model	Framework	#	% Acc	# GPU Ptrs
Resnet152v1	TensorFlow	94M	100.0	940
SSD-	TensorFlow	21M	100.0	145
MobileNetV1				
MobileNetV2	TensorFlow	6M	100.0	268
VGG16	TensorFlow	16M	100.0	34
BD-LSTM	TensorFlow	3M	100.0	14
Resnet152v1	PyTorch	60M	100.0	777
MobileNetV1	PyTorch	3M	100.0	137
MobileNetV2	PyTorch	6M	100.0	268
VGG16	PyTorch	16M	100.0	34
BD-LSTM	PyTorch	5M	100.0	11

AiP Recovery

Model Recovery

Models with upwards of **94** M weights are recovered with **100%** accuracy.

100% accuracy guaranteed at inference by graph guided recovery.

GPU tensors (as many as **940** and as low as **11**) recovered successfully.

Models from multiple application domains -(containing different operations types) are recovered.

Madal	Framework	Weights F		
Model		#	% Acc	# GPU Purs
Resnet152v1	TensorFlow	94M	100.0	940
/ SSD- / MobileNetV1	TensorFlow	21M	100.0	145
MobileNetV2	TensorFlow	6M	100.0	268
VGG16	TensorFlow	16M	100.0	34
BD-LSTM	TensorFlow	3M	100.0	14
Resnet152v1	PyTorch	60M	100.0	777
MobileNetV1	PyTorch	3M	100.0	137
MobileNetV2	PyTorch	6M	100.0	268
VGG16	PyTorch	16M	100.0	34
BD-LSTM	PyTorch	5M	100.0	11

AiP Recovery

Model Rehosting

Rehosting: Tested Model = Deployed Model

AiP Rehosting							
Madal	Framework	# Layers Rehosted	% Accuracy				
Widdel			Deployed	Rehosted			
Resnet152v1	TensorFlow	3	97.3	97.3			
SSD- MobileNetV1	TensorFlow	4	97.9	97.9			
MobileNetV2	TensorFlow	4	82.6	82.6			
VGG16	TensorFlow	2	72.1	72.1			
BD-LSTM	TensorFlow	3	84.2	84.2			
Resnet152v1	PyTorch	3	97.2	97.2			
MobileNetV1	PyTorch	4	98.5	98.5			
MobileNetV2	PyTorch	4	64.1	64.1			
VGG16	PyTorch	2	66.5	66.5			
LSTM	PyTorch	3	79.5	79.5			

Model Rehosting

Rehosting: Tested Model = Deployed Model

The accuracy for the deployed and AiP rehosted models are the same indicating -successful rehosting!

AiP Rehosting							
Model	Framework	# Layers	% Accuracy				
Widdei		Rehosted	Deployed	Rehosted			
Resnet152v1	TensorFlow	3	97.3	97.3			
SSD-	TensorFlow	4	97.9	97.9			
MobileNetV1		1	i				
MobileNetV2	TensorFlow	4	82.6	82.6			
VGG16	TensorFlow	2	72.1	72.1			
BD-LSTM	TensorFlow	3-+	84.2	84.2			
Resnet152v1	PyTorch	3	97.2	97.2			
MobileNetV1	PyTorch	4	98.5	98.5			
MobileNetV2	PyTorch	4	64.1	64.1			
VGG16	PyTorch	2	66.5	66.5			
LSTM	PyTorch	3	79.5	79.5			

Model Rehosting

Rehosting: Tested Model = Deployed Model

The accuracy for the deployed and AiP rehosted models are the same indicating successful rehosting!

Number of layer types rehosted for each model are the same (even across frameworks!).

AiP Rehosting						
Model Fromework		# Layers	% Acc	% Accuracy		
Model	Framework	Rehosted	Deployed	Rehosted		
Resnet152v1	TensorFlow	3	97.3	97.3		
SSD-	TensorFlow	4	97.9	97.9		
MobileNetV1						
MobileNetV2	TensorFlow	4	82.6	82.6		
VGG16	TensorFlow	2	72.1	72.1		
BD-LSTM	TensorFlow	3	84.2	84.2		
Resnet152v1	PyTorch	3	97.2	97.2		
MobileNetV1	PyTorch	4	98.5	98.5		
MobileNetV2	PyTorch	4	64.1	64.1		
VGG16	PyTorch	2	66.5	66.5		
LSTM	PyTorch	3	79.5	79.5		

Much More in the Paper!

Forensics during online-learning

Investigation of backdoored models

Comparison to black-box approaches

Many thanks!

Georgia Tech Research Institute

AI Psychiatry: Forensic Investigation of Deep Learning Networks in Memory Images Oygenblik, D., Yagemann, C., Zhang, J., Mastali, A., Park, J., Saltaformaggio, B.

USENIX, 2024

https://github.com/CyFI-Lab-Public/AIP.git

Thank you! Questions? ③

David Oygenblik

<u>davido@gatech.edu</u>

davidoygenblik.github.io

