

Privacy-Preserving Data Aggregation with Public Verifiability Against Internal Adversaries

😿 Marco Palazzo, 😿 Florine W. Dekker, 🛞 Alessandro Brighente, 🕘 孩 Mauro Conti, 😿 Zeki Erkin

Cyber Security Group, Delft University of Technology
SPRITZ Security and Privacy Research Group, Universita di Padova

Data aggregation Examples

- Process and summarize data to extract insights from it
- Examples
 - Censuses
 - COVID-19
 - Smart grids
- Medical data

https://www.economist.com/books-and-arts/2020/04/16/a-lively-and-enlightening-history-of-the-census

Privacy concerns

Medical data

• Fines

T Delft

- Lack of trust leads to harmful behaviours
 - Not disclosing "embarrassing" conditions
 - Self-treating

Why we need verifiability

- Intermediate stations in smart grids may be hacked
- Reporters are not trusted
- Incorrect medical data may lead to wrong diagnoses

Verifiable privacy-preserving data aggregation

- Compute a statistic from a set of private inputs
- No unauthorized party learns the individual inputs
- Only the final result is revealed
- The correctness of the result can be verified

Related work

Malicious aggregator

The aggregator must provide an aggregate signature of the summation, which can be verified by anyone holding the verification key.

The aggregator cannot produce the signature by itself.

 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. PUDA - privacy and unforgeability for data aggregation. In Michael K. Reiter and David Naccache, editors, Cryptology and Network Security 14th International Conference, CANS 2015, Marrakesh, Morocco, December 10-12, 2015, Proceedings, volume 9476 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015. doi:10.1007/978-3-319-26823-1_1.

 Bence Gabor Bakondi, Andreas Peter, Maarten H. Everts, Pieter H. Hartel, and Willem Jonker. Publicly verifiable private aggregation of time-series data. In 10th International Conference on Availability, Reliability and Security, ARES 2015, Toulouse, France, August 24-27, 2015, pages 50–59. IEEE Computer Society, 2015. doi:10.1109/ARES.2015.82.

Related work

Malicious aggregator and users

If the aggregator is allowed to collude with at least 1 user, these schemes cannot guarantee the integrity of the aggregation anymore

 Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. PUDA - privacy and unforgeability for data aggregation. In Michael K. Reiter and David Naccache, editors, Cryptology and Network Security 14th International Conference, CANS 2015, Marrakesh, Morocco, December 10-12, 2015, Proceedings, volume 9476 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015. doi:10.1007/978-3-319-26823-1_1.

 Bence Gabor Bakondi, Andreas Peter, Maarten H. Everts, Pieter H. Hartel, and Willem Jonker. Publicly verifiable private aggregation of time-series data. In 10th International Conference on Availability, Reliability and Security, ARES 2015, Toulouse, France, August 24-27, 2015, pages 50–59. IEEE Computer Society, 2015. doi:10.1109/ARES.2015.82.

Related work

Malicious aggregator and users

Fully Trusted
 Honest-but-Curious
 Malicious
 Collusion

- LL21 introduces an additional honest-butcurious party called the Converter to help with the construction of the signatures.
- The verifier must be a fully-trusted external party.
- Only pairwise collusions between each party are permitted. However, a flaw in the protocol may allow an aggregator that colludes with 1 user to forge arbitrary signatures.

Leontiadis, Iraklis, and Ming Li. "Secure and Collusion-Resistant Data Aggregation from Convertible Tags." International Journal of Information Security 20, no. 1 (February 2021): 1–20. https://doi.org/10.1007/s10207-019-00485-4.

Our goal

- A privacy-preserving data aggregation scheme with **public verifiability** achieve
 - Confidentiality of the private inputs
 - Integrity and Authenticity of the aggregate statistic (the sum)
- with
 - a malicious aggregator
 - multiple malicious users
- without relying on additional semi-trusted parties during execution.

Adversarial model

System model and assumptions

Fully Trusted
 Honest-but-Curious
 Malicious
 Collusion

- There can be multiple verifiers
- Anyone can be a verifier, including the users and the aggregator
- · The trusted authority T leaves after the setup
- The aggregator and a subset of users of size *k* are actively malicious and can collude with each other. They attempt to learn the private inputs of other users and to affect the correctness of the aggregation
- Availability attacks are out of scope for now. They are addressed with the mPVAS-IV extension

Our contribution

- mPAS: Publicly Verifiable Aggregate Signatures with Malicious Participants
- mPAS+: Reduced communication cost by grouping users.
- mPAS-IV: Detection and removal of malicious users.
- mPAS-UD: Exit strategy without restarting the protocol.

Publicly Verifiable Aggregate Signatures with Malicious Participants (mPVAS)

Goal

• Each user starts from a commitment of this form (initial signature)

Goal

• The goal is to aggregate all submitted signatures

 $(H(t))^{\sum sk_i} \cdot (g_1)^{\sum x_{i,t}}$

Goal

- Since the generators are public, the input value can easily be modified by multiplying the signature by $g_1^{\chi\prime}$
- To prevent this, we can wrap the signature under an additional exponent s that must not be disclosed to the aggregator

Goal

- mPVAS can be run in parallel to another privacy-preserving data summation scheme
 - mPVAS computes the aggregate signature, the data summation protocol computes the sum of the inputs
- The sum can also be extracted from the signature if the input space is small enough

1. Setup phase

The trusted dealer chooses a random secret $s \in \mathbb{Z}_p$

- Users can collude with the aggregator, so we must also protect s from them
- Assume at most k malicious users, then we can split the secret into k+1 shares

1. Setup phase

Dealer generates k + 1 random keys $ek_{j,i} \in \mathbb{Z}_p$ for each user such that

$$\sum_{j=1}^{n} \sum_{i=1}^{k+1} ek_{j,i} = 0$$

″UDelft

2. Signing phase

Each user in the signing set adds its share $[s]_j$ of s in the exponent and adds one masking factor $H_1(t)^{ek_{j,1}}$ to the signature

Extensions

- mPAS: Publicly Verifiable Aggregate Signatures with Malicious Participants
- mPAS+: Reduced communication cost by grouping users.
- mPAS-IV: Detection and removal of malicious users.
- mPAS-UD: Exit strategy without restarting the protocol.

Evaluation

Setup

- Threadripper 7970X CPU... on a single core
- Python, with CHARM for pairing cryptography
- MNT224 as type-3 elliptic curve (112 bits of security)
- Basic implementation, no specific optimizations

Evaluation

mPVAS – Empirical runtime

TUDelft

Evaluation

Communication complexity

Dealer	Agg.	User	Verifier	Ledge
O(n)	<i>O</i> (1)	<i>O</i> (1)	-	no
O(1)	O(1)	O(1)	-	O(n)
O(n)	$O(n^2)$	O(n)	-	no
O(n)	O(kn)	O(k)	-	no
O(n)	O(cn)	O(c)	-	no
O(n)	O(kn)	O(k)	-	no
O(n)	O(kn)	O(k)	-	no
	$\begin{array}{c} \textbf{Dealer} \\ O(n) \\ O(1) \\ O(n) \end{array}$	DealerAgg. $O(n)$ $O(1)$ $O(1)$ $O(1)$ $O(n)$ $O(n^2)$ $O(n)$ $O(kn)$ $O(n)$ $O(kn)$ $O(n)$ $O(kn)$ $O(n)$ $O(kn)$ $O(n)$ $O(kn)$ $O(n)$ $O(kn)$	DealerAgg.User $O(n)$ $O(1)$ $O(1)$ $O(1)$ $O(1)$ $O(1)$ $O(n)$ $O(n^2)$ $O(n)$ $O(n)$ $O(kn)$ $O(k)$ $O(n)$ $O(cn)$ $O(c)$ $O(n)$ $O(kn)$ $O(k)$ $O(n)$ $O(kn)$ $O(k)$ $O(n)$ $O(kn)$ $O(k)$ $O(n)$ $O(kn)$ $O(k)$	DealerAgg.UserVerifier $O(n)$ $O(1)$ $O(1)$ - $O(1)$ $O(1)$ $O(1)$ - $O(n)$ $O(n^2)$ $O(n)$ - $O(n)$ $O(kn)$ $O(k)$ - $O(n)$ $O(cn)$ $O(c)$ - $O(n)$ $O(kn)$ $O(k)$ - $O(n)$ $O(kn)$ $O(k)$ - $O(n)$ $O(kn)$ $O(k)$ - $O(n)$ $O(kn)$ $O(k)$ -

[29] Iraklis Leontiadis and Ming Li. Secure and collusion-resistant data aggregation from convertible tags. Int. J. Inf. Sec., 20(1):1–20, 2021. doi:10.1007/s10207-019-00485-4.

[34] Dimitris Mouris and Nektarios Georgios Tsoutsos. Masquerade: Verifiable multi-party aggregation with secure multiplicative commitments. IACR Cryptol. ePrintArch., page 1370, 2021. URL https://eprint.iacr.org/2021/1370

[37] Yanli Ren, Yerong Li, Guorui Feng, and Xinpeng Zhang. Privacy-enhanced and verification-traceable aggregation for federated learning. IEEE Internet Things J., 9(24):24933–24948, 2022. doi:10.1109/JIOT.2022.3194930.

Conclusion

Recap

- Publicly verifiable summation with input confidentiality and output integrity
- First scheme against collusion of aggregator and multiple malicious users
- Three extensions: improved communication, input validation, and availability
- Fast for practical applications (even without any optimisations)

Thank you very much for your time!

Special thanks to the anonymous reviewers.

