
Racing for TLS Certificate Validation: A Hijacker’s Guide to the
Android TLS Galaxy

Sajjad Pourali†1, Xiufen Yu†1, Lianying Zhao2, Mohammad Mannan1, and Amr Youssef1

1Concordia University, 2Carleton University, Canada

August 14, 2024

Racing for TLS Certificate Validation 1 / 19

†euqal contribution

Outline

1 Motivation

2 Marvin

3 Validation “Hijacking”

4 Results

5 Reflections

Racing for TLS Certificate Validation 2 / 19

TLS Certificate Validation in Android Apps

Apps communicate sensitive data, hence the need for TLS
Security of each TLS connection is anchored in proper certificate validation
The long-standing old problems:

A plethora of certificate validation problems have been identified
Findings/observations are attributed to (monolithic) apps

B

A

SEC
URE

!

INS
ECU

RE!

Racing for TLS Certificate Validation 3 / 19

Apps Are No Longer Monolithic (not new)

Most mobile apps contain code written/provided by multiple parties, aka. SDKs, e.g.,
Tencent Bugly, Google AdMob, Facebook Analytics and Bytedance SDK

Fine-grained attribution is necessary for accurate remediation

SEC
URE

!

app A

LIB1

LIB2

LIB3

...

INS
ECU

RE!

INS
ECU

RE!

SEC
URE

!

cf. Android Privacy Sandbox → SDK runtime

Racing for TLS Certificate Validation 4 / 19

Major Contributions

1 Marvin: a tool for fine-grained attribution of improper TLS certificate validation

2 Certificate validation “hijacking”: Surprisingly, who wrote code leading to insecure
connections might not be the party to blame

Racing for TLS Certificate Validation 5 / 19

Outline

1 Motivation

2 Marvin

3 Validation “Hijacking”

4 Results

5 Reflections

Racing for TLS Certificate Validation 5 / 19

Certificate Validation Problems Considered

The 4 validation issues we consider:
1 Unverified Certificate Signature
2 Self-signed Certificate
3 Expired Certificate
4 Domain Mismatch

Validation functions involved:

javax.net.ssl.HostnameVerifier → verify()
javax.net.ssl.X509TrustManager
(from javax.net.ssl.SSLSocketFactory) → checkServerTrusted()

Racing for TLS Certificate Validation 6 / 19

Marvin: Fine-grained Attribution Analysis

Phone

Parse Insecure TLS Connections

TLS Intercept
Hook Certificate VerificationHook Encryption

Redirect & Separate TrafficUI Interaction

Remote Servers

Mitmproxy

Determine Attribution Type

Identify TLS Connection
Initiator & Validator

Determine HijackingAttribution

Identify Information Leaks

Identify Insecure Encryption

Determine Third-parties

Measure Insecure TLS & Consequences

Insecure TLS Connections
Secure TLS Connections

TLS PassthroughOriginal Certificate

Data, Stacktrace, Logs

TLS InterceptionExecution and Data Collection

Fine-grained Attribution

Replaced Certificate

We correlate local API stack traces with network traffic during certificate validation
Racing for TLS Certificate Validation 7 / 19

Datasets: Google Play vs. Chinese App Stores

Rationale: Research has identified various distinctions between Google Play apps and Apps
from Chinese stores, e.g., permissions, installation sources, policies/regulations

Google Play apps
Based on APKPure ranking
5,061 successfully analyzed in total

Apps from Chinese stores
360 Mobile Assistant — Qihoo 360 AppStore
2,765 successfully analyzed in total

Analyzed on two Pixel 7 and one Pixel 6 devices with Android 13
12–24 minutes per app

Racing for TLS Certificate Validation 8 / 19

Outline

1 Motivation

2 Marvin

3 Validation “Hijacking”

4 Results

5 Reflections

Racing for TLS Certificate Validation 8 / 19

What Enables the “Hijacking”?

Despite the various HTTP client implementations in Android, most support methods to
set global default values:
setDefaultSSLSocketFactory() and setDefaultHostnameVerifier()

Which then allows the new instance creator to override the validation functions (as
interface methods)

Any code within the app will be able to do it, affecting the rest of the app

Racing for TLS Certificate Validation 9 / 19

Hijacking Is Bad as the Name Implies
The standard functions were either overridden with insecure implementations or just skipped

Racing for TLS Certificate Validation 10 / 19

Outline

1 Motivation

2 Marvin

3 Validation “Hijacking”

4 Results

5 Reflections

Racing for TLS Certificate Validation 10 / 19

Statistics

1851/7826 apps with at least one certificate validation issue, leading to insecure
connections

1529/2765 (55.3%) for Chinese apps
322/5061 (6.4%) for Google Play apps

592/1851 apps with validation function override (hijacking) — 32% of the insecure ones
524/1529 (34.3%) for Chinese apps
68/322 (21.1%) for Google Play apps

Racing for TLS Certificate Validation 11 / 19

Attribution Cases

Among the apps with insecure connections:

App Connection
Validated by App Code

Lib Connection
Validated by App Code

(Hijacking)

TLS Valildator

TLS Initiator
Connection Initiated

by App Code
Connection Initiated

by Lib Code

Certificate Validated
by App Code

Certificate Validated
by Lib Code

Certificate Validated
by a different Lib

App Connection
Validated by Lib Code

(Hijacking)

Lib Connection
Validated by Lib Code

Lib Connection Validated
by the code of a different

Lib (Hijacking)

Google apps 99 (30.7%)

Chinese apps

28 (8.7%) 12 (3.7%)50 (15.5%) 23 (7.1%)

361 (23.6%) 747 (48.9%) 102 (6.7%)194 (12.7%) 360 (23.5%)

Racing for TLS Certificate Validation 12 / 19

One Example for Each Case
App connection validated by app code

1 at com.datayes.common.net.interceptor.ssl.OkHttpSSLSocketFactory$1.checkServerTrusted(Native Method)
2 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
3 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
4 ...
5 at com.datayes.common cloud.net.interceptor.TokenInterceptor.intercept(TokenInterceptor.java:97)

Library connection validated by library code
1 at cn.jiguang.net.DefaultHostVerifier.verify(Native Method)
2 at com.android.okhttp.internal.io.RealConnection.connectTls(RealConnection.java:200)
3 at com.android.okhttp.internal.io.RealConnection.connectSocket(RealConnection.java:153)
4 ...
5 at cn.jiguang.net.HttpUtils.a(Unknown Source:196)
6 at cn.jiguang.net.HttpUtils.httpPost(Unknown Source:1)

App connection validated by library code (hijacking)
1 at com.tencent.bugly.proguard.s.checkServerTrusted(Native Method)
2 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
3 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
4 ...
5 at com.dnurse.main.ui.FlashActivity.downLoadImage(FlashActivity.java:11)(SourceFile:341)
6 at com.dnurse.main.ui.FlashActivity$a.doInBackground(FlashActivity.java:1)

Library connection validated by app code (hijacking)
1 at rich.y$a.verify(Native Method)
2 at com.android.okhttp.internal.io.RealConnection.connectTls(RealConnection.java:200)
3 at com.android.okhttp.internal.io.RealConnection.connectSocket(RealConnection.java:153)
4 ...
5 at com.growingio.android.sdk.data.net.HttpService.performRequest(HttpService.java:132)
6 at com.growingio.android.sdk.data.net.HttpService.performRequest(HttpService.java:81)

Racing for TLS Certificate Validation 13 / 19

One Example for Each Case (CONT’D)

Library connection validated by another library (hijacking)
1 at com.kuaishou.weapon.p0.q2$a.checkServerTrusted(Native Method)
2 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
3 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
4 ...
5 at com.umeng.commonsdk.statistics.internal.c.a(Unknown Source:170)
6 at com.umeng.commonsdk.statistics.internal.c.a(Unknown Source:57)

Multiple hijacking actors (race condition)
1 /* ————– (1) Baidu is hijacked by Bugly ————– */
2 at com.tencent.bugly.proguard.s$1.checkServerTrusted(Native Method)
3 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
4 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
5 ...
6 at com.baidu.lbsapi.auth.g.a(Unknown Source:47)
7 at com.baidu.lbsapi.auth.g.a(Unknown Source:30)
8 /* ———— (2) Baidu is validated by Baidu again ———— */
9 at com.baidu.location.h.p.checkServerTrusted(Native Method)

10 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
11 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
12 ...
13 at com.baidu.location.h.l.run(Unknown Source:171)

Racing for TLS Certificate Validation 14 / 19

Information Leakage and Various Attacks

Among the apps with certificate validation
issues:

Apps from Chinese stores: 1358/1529
(88.8%) transmit sensitive
information using insecure TLS
connections

Google play apps: the percentage is
278/322 (86.3%)

A PoC phishing attack
on a real app:

Before After

Racing for TLS Certificate Validation 15 / 19

Outline

1 Motivation

2 Marvin

3 Validation “Hijacking”

4 Results

5 Reflections

Racing for TLS Certificate Validation 15 / 19

Observations

When/whether the (updated) default values are retrieved, before each HTTPS call

Most implementations (e.g., Apache HttpClient, Volley, and Square OkHttp) do not,
except Google’s fork of OkHttp

Other HTTP clients are potentially as vulnerable as per our manual analysis

Racing for TLS Certificate Validation 16 / 19

Mitigation?

Is this working as designed?
Is such flexibility needed?
The threat model shift

The possibility of introducing warnings/errors in Android Studio (as per Google)
To place the burden on the developer

If Privacy Sandbox (SDK runtime) could be adopted and enforced

Racing for TLS Certificate Validation 17 / 19

Additional Devices/OSes Tested

Huawei Mate20 Pro, EMUI 10.1.0 (Android 10): Vulnerable

LG G8 ThinQ, Android 12: Vulnerable

Amazon Fire HD 8 (12th Gen), Fire OS 8.3.2.4 (Android 11): Vulnerable

Samsung Galaxy A10e, Android 11: Vulnerable

Honor Magic4 Pro, Android 14: Vulnerable

Huawei P40, HarmonyOS 4.2.0: Vulnerable

Racing for TLS Certificate Validation 18 / 19

Thank you!!

Lianying Zhao: lianying.zhao@carleton.ca
Sajjad Pourali: s poural@cisse.concordia.ca Xiufen Yu: xiufen.yu@mail.concordia.ca

Paper highlights
Fine-grained attribution for TLS certificate validation issues
Certificate validation hijacking, leading to insecure connections
The tricky cause and implications of certificate validation hijacking
Marvin: https://github.com/Madiba-Research/Marvin/

Racing for TLS Certificate Validation 19 / 19

https://github.com/Madiba-Research/Marvin/

	Motivation
	Marvin
	Validation ``Hijacking''
	Results
	Reflections

