
FVD-DPM: Fine-grained Vulnerability Detection

via Conditional Diffusion Probabilistic Models

Miaomiao Shao, Yuxin Ding

Harbin Institute of Technology, Shenzhen, China

Email: 21B951007@stu.hit.edu.cn

August 16, 2024

C
O

N
TEN

TS

1

3

2

4

Research background

Research result

Main research content

Research prospect

USENIX Security '24

Part 1 Research background

USENIX Security '24

1 Research background

Automatic Software Vulnerability Detection

Ø Software vulnerabilities pose a significant threat to software security

Ø Existing vulnerability detection approaches

• Symbolic execution

• Rule-base techiniques

• Code similarities

• Deep Learning

USENIX Security '24

Program semantics have not been fully leveraged

Ø Token sequence ignores the structural information of programs

Ø Graph-based representations, e.g., AST, CFG, DFG, PDG, extract

program semantics from individual functions, disregarding call

relationships between functions

Ø Detection granularity is mostly at the file-level, function-level,

slice-level

Ø Vulnerabilities always involve only a few statements

1 Research background

Drawbacks of existing deep learning-based approaches

Detection granularity is coarse-grained

An out-of-bounds read vulnerability (CVE-2023-38430)

USENIX Security '24

Main research contentPart 2

USENIX Security '24

Overview of FVD-DPM

2 Main research content

USENIX Security '24

• Control Flow Graph (CFG)

• Data Flow Graph (DFG)

• Call Graph (CG)

• Code Sequence (CS)

Generating Code Joint Graph (CJG) Extracting Slicing Entry Nodes

Joern, Neo4j

2 Main research content

Step I: Feature extraction

• API/library function calls

• Sensitive variables (array and pointer

variables)

• Arithmetic expressions

USENIX Security '24

USENIX Security '24

Program Slicing Node Embedding

2 Main research content

Step I: Feature extraction

• Node type

• Node value

• Start from the slicing entry node
• Iteratively perform forward and backward

slicing until all nodes in the CJG are traversed

GrVCs

USENIX Security '24

2 Main research content

Step II: Diffusion-based Vulnerability Prediction

研究
意义

Forward Diffusion Process

• Node label ��
(0) conforms to the initial data distribution �(�)

• Gaussian noise is continuously injected into the data
distribution during the forward diffusion process

Conditional Reverse Process

• Reconstruction of the node label ��
(0) from Gaussian

noise conditioned on the graph structure �� and ��
(�)

• ��
(�) is sampled from the Gaussian distribution �(0, �)

2 Main research content

We formalize the diffusion process using a GrVCs, denoted as ��(��, ��). The graph ��(��, ��)
consists of a node set �� and an edge set ��. The node label of the graph ��(��, ��) is represented by
��, with values of 0 (vulnerable) and 1 (non-vulnerable). Given that the node label �� is discrete, we
relax it into an one-hot vector to yield continuous values.

�(��
(1), ⋯, ��

(�)|��
(0)) =

�=1

�

�(��
(�)|��

(�−1))

�(��
(�)|��

(�−1)) = �(��
(�); 1 − ����

(�−1), ���)

��(��
(0), ⋯, ��

(�−1)|��
(�), ��) =

�=1

�

��(��
(�−1)|��

(�), ��)

��(��
(�−1)|��

(�), ��) = �(��
(�−1); ��(��

(�), ��), ��)

USENIX Security '24

研究
意义

2 Main research content

Learning the mean and variance

• Calculate the inverse distribution �(��
(�−1)|��

(�), ��
(0))

• Bayes theorem

• �(��
(�−1)|��

(�), ��
(0)) is a Gaussian distribution denoted as �(��, ��)

• ��(��
(�−1)|��

(�), ��) is also a Gaussian distribution denoted as

�(��(��
(�), ��), ��)

GAT with Hybrid Time Encoding

• Absolute time encoding

• Relative time encoding

�(��
(�−1)|��

(�), ��
(0)) = �(��

(�)|��
(�−1), ��

(0))
�(��

(�−1)|��
(0))

�(��
(�)|��

(0))
��,�,�� =

exp(�(��[(��ℎ�,�⊕��ℎ�,�) + ���(�)]))
 �∈�� exp(�(�

�[(��ℎ�,�⊕��ℎ�,�) + ���(�)]))

��,� = �
1
�

�=1

�

�∈��

��,�,�� (��ℎ�,� + ���(�))

ℎ�,�’ = �(��,� + ���(�)) ⊕ ��,�
(�)

��(��
(�), ��) = MLP(ℎ�’)

 �(∙) LeakyReLU

 �(∙) ELU

�� =
1
��
(��
(�) −

��
1 − ��

)��

�� =
1 − ��−1
1 − ��

��

��(��
(�), ��) =

1
��
(��
(�) −

��
1 − ��

)��(��
(�), ��)

�� = exp(�log�� + (1 − �)log��)
USENIX Security '24

Research resultPart 3

USENIX Security '24

研究
意义

3 Research result

How effective and precise is FVD-DPM in locating different types of
vulnerabilities?

How effective is CJG in vulnerability detection compared to existing code
representations?

Can FVD-DPM perform better in vulnerability detection by incorporating
hybrid time encoding into GAT, and simultaneously learning mean and
variance of the noisy label distribution?

How effective is FVD-DPM when compared to state-of-the-art vulnerability
detection approaches?

Research questions

USENIX Security '24

Datasets

• Vulnerability identification (slice-level detection):

 Cppcheck, Flawfinder, Devign, VulDeePecker, SySeVR, VulDeeLocator, MVD

• Vulnerability localization (statement-level detection):
 Cppcheck, DeepLineDP, VulDeeLocator

Baselines

Recall (R) F1 score (F1) Area Under Curve (AUC)

Matthews Correlation Coefficient (MCC) Intersection over Union (IoU)
Metics

3 Research result

Dataset #Version #Vul. Fs #Fs #Vul. GrVCs #Non-Vul. GrVCs #GrVCs #Nodes #Edges

NVD - 937 2,011 4,355 8,526 12,881 870,855 4,633,355

SARD 2,851 5,879 4,742 22,720 27,462 240,202 580,908

OpenSSL 0.9.6-3.0.7 2,009 2,302 6,677 3,362 10,039 221,262 684,357

Libav 0.6-11.5 1,666 1,956 7,710 4,334 12,044 334,964 1,372,749

Linux Kernel 2.6-5.17 1,178 1,528 4,036 2,287 6,323 272,267 1,099,651

Total - 8,641 13,676 27,520 41,229 68,749 1,939,550 8,371,020

USENIX Security '24

Identification results (%)

3 Research result

Method F1 R AUC MCC

Flawfinder 49.73 52.86 - 10.07

Cppcheck 61.09 71.43 - -

MVD 65.20 61.50 - -

VulDeePecker 71.48 77.62 77.65 51.20

Devign 73.26 - - -

SySeVR 79.72 81.26 - 60.49

VulDeeLocator 85.90 82.07 - -

FVD-DPM (ours) 85.73 82.93 86.40 72.14

Localization results (IoU: %)

Method NVD SARD OenSSL Libav Linux Kernel

Cppcheck 15.27 9.89 48.79 42.82 27.33

DeepLineDP 31.05 14.67 18.53 24.31 30.02

VulDeeLocator 32.60 36.30 - - -

FVD-DPM 59.04 72.35 63.13 62.95 72.70

Method CWE190 CWE121 CWE122 CWE415 CWE416

VulChecker 97.00 85.40 79.00 100.00 90.90

FVD-DPM 97.87 88.30 90.93 94.83 88.23

FVD-DPM VS. VulChecker

Results for RQ1

• FVD-DPM outperforms most existing state-of-
the-art vulnerability detection approaches

USENIX Security '24

Contributions of different edge types in Code Joint Graph (%)

3 Research result

RQ2: Effectiveness of Code Joint Graph

Code representation
Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU

CFG 82.45 76.33 82.72 60.03 71.81 55.97 82.68 72.17 60.76

CFG+DF 82.69 79.22 84.73 69.16 79.29 77.90 88.91 79.22 61.14

CFG+DF+CG 82.74 80.02 85.02 69.10 78.95 78.94 89.41 78.88 61.77

CFG+DF+CG+CS (CJG) 85.28 82.28 85.91 70.51 79.60 77.15 88.53 79.55 64.90

• Overall, the model's performance gradually improved as we added different types of edges to the CFG
• The model's performance with CFG+DF significantly surpassed that of the CFG, highlighting the

substantial contribution of data flow to extracting vulnerability features

USENIX Security '24

Comparative experiments on models with and without hybrid time encoding (%)

3 Research result

Results for RQ3: Ablation Study

Experimental results achieved by different objectives

Time Encoding
Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU

Without 77.20 69.72 80.28 60.64 74.96 72.21 86.04 74.97 58.22

With 86.05 83.34 86.15 71.90 79.72 78.05 88.97 79.65 66.00

Objective
Vulnerability Identification Vulnerability Localization

F1 R AUC MCC F1 R AUC MCC IoU

Lsimple 84.98 81.64 85.32 71.05 77.82 74.76 87.32 77.88 63.67

Lhybrid 86.41 83.62 86.30 72.61 79.62 77.08 88.48 79.63 66.05

USENIX Security '24

3 Research result

RQ4: Results on Different CWE Types

• FVD-DPM achieves good performance in locating vulnerable statements across different
vulnerability types

• The vulnerability pattern of CWE-121 is complex and may involve multiple statements in various
functions, making it more challenging to identify

USENIX Security '24

Research prospectPart 4

USENIX Security '24

研究
意义

3 Research prospect

Improve the interpretability of deep learning-based
vulnerability detection approaches

Explore the potential of leveraging popular large language
models (LLMs), such as ChatGPT, DeepSeek Coder, in fine-
grained vulnerability detection

USENIX Security '24

THANK YOU

33rd USENIX Security Symposium (USENIX Security '24)

Miaomiao Shao

Harbin Institute of Technology, Shenzhen, China

Email: 21B951007@stu.hit.edu.cn

August 16, 2024

