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CPUs are certainly still full of bugs, with potential security implications

Flavien Solt, Patrick Jattke, and Kaveh Razavi. "RemembERR: Leveraging Microprocessor Errata for Design Testing and Validation." 2022
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Idea: Explicitly generate long, complex 
and valid programs.
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CPU fuzzers combined

Outperforms SoA coverage
(despite being black-box)
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SoA CPU fuzzers By definition, CPU inputs are programs.

(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21
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Initialization
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Program dies prematurely
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Test cases are almost always broken

Initialization

Problem 1: Overrepresentation of always the 
same instruction snippets

Program

Finalization
Program dies prematurely

Problem 2: Uncertain effect of mutations

A mutation here would be wasteful 

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing 
to Find CPU Bugs", S&P '21

From a completion point of view.
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1. Program 
generation

2. Entanglement
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<nop>

jalr x9, (<"safe_reg">)

Extreme 2: Isolate control 
flow from data flow
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everything random Flow entanglement

Invalid Complex Valid Complex
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Cascade vs. DifuzzRTL:
97x faster control register coverage

< 30min
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RISC-V cores 
under test

• PicoRV32

• Kronos

• VexRiscv

• CVA6

• Rocket

• BOOM
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Conclusion

• Cascade is a RISC-V CPU fuzzer that generates valid, long & complex programs.

• Cascade introduces AIPS to entangle flows and use non-termination as a bug signal.

• Cascade outperforms state-of-the-art coverage-guided CPU fuzzers by 28-200x.

• Cascade found 37 new CPU bugs + 1 new synthesizer bug, 29 new CVEs.

• Cascade is readily open source: https://github.com/comsec-group/cascade-artifacts

57

flsolt@ethz.ch comsec.ethz.ch comsec-group/cascade-artifacts

Image credits: Microsoft Bing

https://github.com/comsec-group/cascade-artifacts
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