
Cascade

CPU Fuzzing via Intricate
Program Generation

Flavien Solt, Katharina Ceesay-Seitz and Kaveh Razavi

ETH Zürich
1

1

2

CPUs are certainly still full of bugs, with potential security implications

Flavien Solt, Patrick Jattke, and Kaveh Razavi. "RemembERR: Leveraging Microprocessor Errata for Design Testing and Validation." 2022

[1]

[1]

Cascade

3

More new CVEs than all previous
CPU fuzzers combined

Cascade

4

More new CVEs than all previous
CPU fuzzers combined

Outperforms SoA coverage
(despite being black-box)

Cascade

5

Idea: Explicitly generate long, complex
and valid programs.

More new CVEs than all previous
CPU fuzzers combined

Outperforms SoA coverage
(despite being black-box)

6

Software vs. CPU fuzzing

Software
under test

CPU
under test

7

Software vs. CPU fuzzing

Software
under test

CPU
under test

Generic
data

8

Software vs. CPU fuzzing

Software
under test

CPU
under test

Generic
data

Structured
program

Software vs. CPU fuzzing

Software
under test

CPU
under test

Generic
data

Structured
program

Crashes

9

10

Software vs. CPU fuzzing

Software
under test

CPU
under test

Generic
data

Structured
program

Crashes

?

CPU under
test

Identical behavior?

ISA
Simulator

Differential fuzzing

11

SoA CPU fuzzers By definition, CPU inputs are programs.

(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

12

Initialization

Program

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

13

Initialization

Program

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

14

Initialization

Program

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

15

Initialization

Program

Finalization
Program dies prematurely

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

16

Test cases are almost always broken

Initialization

Program

Finalization
Program dies prematurely

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

17

Test cases are almost always broken

Initialization

Problem 1: Overrepresentation of always the
same instruction snippets

Program

Finalization
Program dies prematurely

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

18

Test cases are almost always broken

Initialization

Problem 1: Overrepresentation of always the
same instruction snippets

Program

Finalization
Program dies prematurely

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

19

Test cases are almost always broken

Initialization

Problem 1: Overrepresentation of always the
same instruction snippets

Program

Finalization
Program dies prematurely

Problem 2: Uncertain effect of mutations

A mutation here would be wasteful

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

20

Test cases are almost always broken

Initialization

Problem 1: Overrepresentation of always the
same instruction snippets

Program

Finalization
Program dies prematurely

Problem 2: Uncertain effect of mutations

A mutation here would be wasteful

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs", S&P '21

21

Test cases are almost always broken

Initialization

Problem 1: Overrepresentation of always the
same instruction snippets

Program

Finalization
Program dies prematurely

Problem 2: Uncertain effect of mutations

A mutation here would be wasteful

SoA CPU fuzzers
(DifuzzRTL family)

J. Hur et al., "DifuzzRTL: Differential Fuzz Testing
to Find CPU Bugs", S&P '21

From a completion point of view.

Requirements

22

Complex

Valid

Cascade design

23

1. Program
generation

2. Entanglement

Code generation in Cascade

24

A
d

d
re

ss
es

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

24

25

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

25

Code generation in Cascade

26

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

26

Code generation in Cascade

27

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

27

Code generation in Cascade

28

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

28

Code generation in Cascade

29

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

29

Code generation in Cascade

30

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

30

Code generation in Cascade

31

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

31

Code generation in Cascade

32

Program generation steps

Init Init

BB1

Init

BB1

Init

BB1

Init

BB1

BB2

Init

BB1

BB2

BB3

Init

BB1

BB2

BB3

BB4

Init

BB1

BB2

BB3

BB4

BB5

Init

BB1

BB2

BB3

BB4

BB5

Fin

A
d

d
re

ss
es

32

Code generation in Cascade

Intended basic block

33

Code generation in Cascade

Intended basic block

Should not
be taken Should contain the start

address of the next
instruction basic block

34

Code generation in Cascade

Intended basic block

Should not
be taken Should contain the start

address of the next
instruction basic block

35

Extreme 1: Keep
everything random

Code generation in Cascade

Intended basic block

Should not
be taken Should contain the start

address of the next
instruction basic block

36

Extreme 1: Keep
everything random

Complex

Code generation in Cascade

Intended basic block

Should not
be taken Should contain the start

address of the next
instruction basic block

37

Extreme 1: Keep
everything random

Invalid Complex

Code generation in Cascade

Intended basic block

Should not
be taken Should contain the start

address of the next
instruction basic block

38

<nop>

jalr x9, (<"safe_reg">)

Extreme 2: Isolate control
flow from data flow

Extreme 1: Keep
everything random

Invalid Complex

Valid Simple

Code generation in Cascade

Intended basic block

Should not
be taken Should contain the start

address of the next
instruction basic block

39

<nop>

jalr x9, (<"safe_reg">)

Extreme 2: Isolate control
flow from data flow

Extreme 1: Keep
everything random Flow entanglement

Invalid Complex Valid Complex

Valid Simple

Code generation in Cascade

40

Asymmetric ISA

pre-simulation
<nop>

jalr x9, (<"safe_reg">)

ISA Simulator

Simplified test case

(executed only once per program)

Valid Simple

41

Asymmetric ISA

pre-simulation
<nop>

jalr x9, (<"safe_reg">)

Simplified test case

Feedback

Entangled test caseTest case
generation

Test case
execution

bne

ISA Simulator
(executed only once per program)

Valid Complex

Valid Simple

42

Asymmetric ISA

pre-simulation
<nop>

jalr x9, (<"safe_reg">)

Simplified test case

Feedback

Entangled test case

CPU under test

Does execution
terminate?

bne

ISA Simulator
(executed only once per program)

Test case
generation

Test case
execution

Valid Complex

Valid Simple

43

Asymmetric ISA

pre-simulation
<nop>

jalr x9, (<"safe_reg">)

Simplified test case

Feedback

Entangled test case

CPU under test

Does execution
terminate?

bne

ISA Simulator
(executed only once per program)

Test case
generation

Test case
execution

Valid Complex

Valid Simple

Results

44

Program length matters

45
45

Coverage of SoA CPU fuzzers

46

Cascade vs. DifuzzRTL

Coverage of SoA CPU fuzzers

47

Cascade vs. DifuzzRTL:
97x faster control register coverage

< 30min

Bugs

48

RISC-V cores
under test

• PicoRV32

• Kronos

• VexRiscv

• CVA6

• Rocket

• BOOM

4949

Bugs

50

37 new CPU bugs (29 new CVEs) in 5 of the 6 cores

50

Bugs

51

37 new CPU bugs (29 new CVEs) in 5 of the 6 cores

51

An example bug (CVE-2023-34896)

5252

On VexRiscv without compressed instruction support

Branch

5353

On VexRiscv without compressed instruction support

Branch

Mis-speculate

An example bug (CVE-2023-34896)

5454

On VexRiscv without compressed instruction support

Branch

Mis-speculate

Compressed floating-
point instruction

Silenced exception

An example bug (CVE-2023-34896)

5555

On VexRiscv without compressed instruction support

Branch

Mis-speculate

…..

Silenced exception

Non-compressed floating-
point instruction

Compressed floating-
point instruction

An example bug (CVE-2023-34896)

5656

On VexRiscv without compressed instruction support

Branch

Mis-speculate

…..

Silenced exception
Hangs!

Compressed floating-
point instruction

Non-compressed floating-
point instruction

An example bug (CVE-2023-34896)

Conclusion

• Cascade is a RISC-V CPU fuzzer that generates valid, long & complex programs.

• Cascade introduces AIPS to entangle flows and use non-termination as a bug signal.

• Cascade outperforms state-of-the-art coverage-guided CPU fuzzers by 28-200x.

• Cascade found 37 new CPU bugs + 1 new synthesizer bug, 29 new CVEs.

• Cascade is readily open source: https://github.com/comsec-group/cascade-artifacts

57

flsolt@ethz.ch comsec.ethz.ch comsec-group/cascade-artifacts

Image credits: Microsoft Bing

https://github.com/comsec-group/cascade-artifacts

Computer Security Group

	Slide 1: Cascade
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Conclusion
	Slide 58

