

Acai: Protecting Accelerator Execution with Arm Confidential Computing Architecture

Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, Mark Kuhne, Fabio Aliberti, and Shweta Shinde

ETH Zurich

Confidential Computing with TEEs

Intel SGX Intel TDX AMD SEV-SNP Arm CCA

Confidential Computing with TEEs

Intel SGX Intel TDX AMD SEV-SNP Arm CCA

Confidential Computing with TEEs

Intel SGX Intel TDX AMD SEV-SNP Arm CCA

Confidential Computing with TEEs

Intel SGX Intel TDX AMD SEV-SNP Arm CCA

Nvidia H100

Securely Compose CC CPU + Accelerator

Securely Compose CC CPU + Accelerator

Securely Compose CC CPU + Accelerator

Bounce Buffers

Bounce Buffers

Data from Nvidia [1]

Nvidia H100 : ~4GBps

PCle 6 : upto 256 GBps

Data from TDX+H100 benchmarking [2]

Allow protected memory access

FIRST SYSTEM FOR PCIE DEVICES WITH CCA EXTEND CCA'S INVARIANTS FOR SECURITY BUILD A CONCRETE DESIGN

Core 1 Realm VM Core 1 Realm DRAM

Time-sharing

Time-slice the device between different Realm VMs

Core 1 Realm VM VM DRAM

Time-sharing

Time-slice the device between different Realm VMs

Hotplugging

Attach and detach during Realm VM lifecycle

Core 1 Realm VM DRAM

Time-sharing

Time-slice the device between different Realm VMs

Hotplugging

Attach and detach during Realm VM lifecycle

Multi-tenancy

Share a device spatially between different Realm VMs

Core 1 Realm VM DRAM

Time-sharing

Time-slice the device between different Realm VMs

Hotplugging

Attach and detach during Realm VM lifecycle

Multi-tenancy

Share a device spatially between different Realm VMs

Map to one VM

Attach device to one VM throughout its lifecycle

Invariant:

Invariant:

Invariant:

Invariant:

Invariant:

Invariant:

	Memory Filter	
RMM	Stage-2 Translation	SMMU

- Isolate devices to their CVM memory
- One-to-one mapping between IPA->PA
- Ensure device and VM always see the same view

- Isolate devices to their CVM memory
- One-to-one mapping between IPA->PA
- Ensure device and VM always see the same view

- Isolate devices to their CVM memory
- One-to-one mapping between IPA->PA
- Ensure device and VM always see the same view
- Ensure exclusive device ownership
- Establish unforgereable identity with attestation
- Hardware based memory encryption on PCIe bus

- Isolate devices to their CVM memory
- One-to-one mapping between IPA->PA
- Ensure device and VM always see the same view
- Ensure exclusive device ownership
- Establish unforgereable identity with attestation
- Hardware based memory encryption on PCIe bus

- Isolate devices to their CVM memory
- One-to-one mapping between IPA->PA
- Ensure device and VM always see the same view
- Ensure exclusive device ownership
- Establish unforgereable identity with attestation
- Hardware based memory encryption on PCIe bus

Putting it together

x86 Host

- No hardware with ARM CCA yet, but
 - Arm's simulator (FVP) supports CCA
 - Little/No support for PCIe devices
- Performance evaluation prototype: Arm Cortex-A53

- We only change the RMM, trusted firmware, the guest Linux kernel
- No changes to the device drivers, runtime, or applications
- Monitor: 1588 LoC
- RMM: 382 LoC
- Guest kernel: 1734 LoC

	Realm VM Accl. app	Linux	
	stub drivers	KVM	
x86 Host	RMM		
	Trusted Firmware		
	FVP Process		

- No hardware with ARM CCA yet, but
 - Arm's simulator (FVP) supports CCA
 - Little/No support for PCIe devices
- Performance evaluation prototype: Arm Cortex-A53

- We only change the RMM, trusted firmware, the guest Linux kernel
- No changes to the device drivers, runtime, or applications
- Monitor: 1588 LoC
- RMM: 382 LoC
- Guest kernel: 1734 LoC

- No hardware with ARM CCA yet, but
 - Arm's simulator (FVP) supports CCA
 - Little/No support for PCIe devices
- Performance evaluation prototype: Arm Cortex-A53

- We only change the RMM, trusted firmware, the guest Linux kernel
- No changes to the device drivers, runtime, or applications
- Monitor: 1588 LoC
- RMM: 382 LoC
- Guest kernel: 1734 LoC

- No hardware with ARM CCA yet, but
 - Arm's simulator (FVP) supports CCA
 - Little/No support for PCIe devices
- Performance evaluation prototype: Arm Cortex-A53

- We only change the RMM, trusted firmware, the guest Linux kernel
- No changes to the device drivers, runtime, or applications
- Monitor: 1588 LoC
- RMM: 382 LoC
- Guest kernel: 1734 LoC

- No hardware with ARM CCA yet, but
 - Arm's simulator (FVP) supports CCA
 - Little/No support for PCIe devices
- Performance evaluation prototype: Arm Cortex-A53

- We only change the RMM, trusted firmware, the guest Linux kernel
- No changes to the device drivers, runtime, or applications
- Monitor: 1588 LoC
- RMM: 382 LoC
- Guest kernel: 1734 LoC

- No hardware with ARM CCA yet, but
 - Arm's simulator (FVP) supports CCA
 - Little/No support for PCIe devices
- Performance evaluation prototype: Arm Cortex-A53

- We only change the RMM, trusted firmware, the guest Linux kernel
- No changes to the device drivers, runtime, or applications
- Monitor: 1588 LoC
- RMM: 382 LoC
- Guest kernel: 1734 LoC

API	Status	Description
rmi_data_create	changed	add data from normal world to realm memory. ACAI adds attach_dev flag.
rsi_delegate_prot_mem	new	delegate realm memory to protected memory. calls smc_delegate_prot_mem.
<pre>smc_device_attach</pre>	new	attach and detach a device from realm.
<pre>smc_delegate_prot_mem</pre>	new	delegate realm memory to protected memory. add stage-2 translation for the SMMU.

Evaluation Setup

- We benchmark on a GPU and FPGA
- Measure number of instructions on the simulator as a performance measure

Evaluation Setup

- We benchmark on a GPU and FPGA
- Measure number of instructions on the simulator as a performance measure

GPU Benchmarks

Арр	Domain	Tasks	T Size	P Size
nn	Dense linear algebra	1	1	42764
gaussian	Dense linear algebra	3148	38	1575 × 1575
needle	Dynamic programming	229	39	1840
pathfinder	Dynamic programming	5	20	50000 × 100
bfs	Graph traversal	2	3	1840
srad_v1	Structured grid	102	2	502 × 458
srad_v2	Structured grid	4	64	2048 × 2048
hotspot	Structured grid	5	3	512 × 512
backprop	Unstructured grid	2	71	262144 × 16 × 1

FPGA Benchmarks

Арр	Domain	T Size	P Size
matmul5	Matrix Multiplication	300 B	42764
matmul10	Matrix Multiplication	1200 B	1575 × 1575
svd32	Singular Value Decomposition	320 KB	1840
svd64	Singular Value Decomposition	20	50000 × 100

Evaluation Setup

- We benchmark on a GPU and FPGA
- Measure number of instructions on the simulator as a performance measure
- Baseline: Encryption with Bounce Buffers
 Realm VM encrypts and copies to Normal world
- Acai

Setup realm memory that device directly accesses

Арр	Domain	Tasks	T Size	P Size
nn	Dense linear algebra	1	1	42764
gaussian	Dense linear algebra	3148	38	1575 × 1575
needle	Dynamic programming	229	39	1840
pathfinder	Dynamic programming	5	20	50000 × 100
bfs	Graph traversal	2	3	1840
srad_v1	Structured grid	102	2	502 × 458
srad_v2	Structured grid	4	64	2048 × 2048
hotspot	Structured grid	5	3	512 × 512
backprop	Unstructured grid	2	71	262144 × 16 × 1

GPU Benchmarks

FPGA Benchmarks

Арр	Domain	T Size	P Size
matmul5	Matrix Multiplication	300 B	42764
matmul10	Matrix Multiplication	1200 B	1575 × 1575
svd32	Singular Value Decomposition	320 KB	1840
svd64	Singular Value Decomposition	20	50000 × 100

Other measurements

Other measurements

Effect on the normal world:

3.8% for GPU and 1.9% for FPGA benchmarks

- Measure the performance of context switches, interface calls, and memory operations
- Measure the performance for transferring a 4KB page with AES-GCM 256-bit block size
- Use FVP measurements to estimate the performance of <u>Bounce Buffers</u> and <u>Acai</u>
- Even with fast hardware encryption, Acai is 2 orders of magnitude faster.

- Measure the performance of context switches, interface calls, and memory operations
- Measure the performance for transferring a 4KB page with AES-GCM 256-bit block size
- Use FVP measurements to estimate the performance of <u>Bounce Buffers</u> and <u>Acai</u>
- Even with fast hardware encryption, Acai is 2 orders of magnitude faster.

- Measure the performance of context switches, interface calls, and memory operations
- Measure the performance for transferring a 4KB page with AES-GCM 256-bit block size
- Use FVP measurements to estimate the performance of <u>Bounce Buffers</u> and <u>Acai</u>
- Even with fast hardware encryption, Acai is 2 orders of magnitude faster.

Summary

- Confidential Computing is becoming ubiquitous, from mobiles to cloud
- Research question: How to extend the notion of Confidential Computing to peripherals and accelerators?
- Acai is one concrete instance to showcase the challenges
- We add device support to the simulator
- Acai is open source!

https://github.com/sectrs-acai

