

USENIX Security '24

Improving the Ability of Thermal Radiation Based Hardware Trojan Detection

Ting Su, Yaohua Wang*, Shi Xu, Lusi Zhang, Simin Feng, Jialong Song, Yiming Liu Yongkang Tang, Yang Zhang, Shaoqing Li, Yang Guo, Hengzhu Liu

National University of Defense Technology

Background

Motivation

Outlines

NICE Mechanism

Experiment & Conclusion

Hardware Trojan Threat

[1] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester. A2: Analog Malicious Hardware. In 2016 IEEE Symposium on Security and Privacy (SP), pages 18–37, San Jose, CA, 2016. IEEE.

[2] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. ICAS: An Extensible Framework for Estimating the Susceptibility of IC Layouts to Additive Trojans. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1742–1759, San Francisco, CA, USA, 2020. IEEE.

[3] Tiago D. Perez and Samuel Pagliarini. Hardware Trojan Insertion in Finalized Layouts: From Methodology to a Silicon Demonstration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(7):2094–2107, 2023.

National University of Defense Technology and the state of Background 3 and 2008 and 3 and

HT Detection Methods

Side-channel Analysis Techniques

High Cost

Complex Process Requiring the **golden chip or testing vectors** Limited by **IC size, process variation and noises Weak Penetration Good penetration Pixel-level Resolution** Fig. 7. Measured raw data and denoised data.

radiation increment of the logic region is 633, and that of $t \sim t$

Thermal Radiation (TR) Based Detection

Ø**Advantages**

- \bullet High detection resolution
- **Process variation resistant**
- Adaptability for large ICs
- \bullet **Golden chip free**
- HT activation free

Previous TR-based Methods

- \triangleright Nazma et al. [TCAD-2014]: Shows promising detection ability, but relies on **stronger simulation tools**
- Ø Tang et al. [TVLSI-2019]: Can only identify **the ideal HT** that fully occupies at least one pixel on the TRM

The ideal HT The HT spreads into multiple pixels

Background

Motivation

Outlines

NICE Mechanism

Experiment & Conclusion

Observation

Ø **Sub-pixel HT**

- We can not ensure precise alignment of the HT boundaries with the pixels
- Each infected pixel is easily blurred as either a logic or vacant area

Observation

Ø **Two sides of mechanical vibration**

Cons: It complicates the TR distinction between sub-occupied and vacant pixels **Pros:** It **can vary the pixel occupation** of HTs

Our Goals

 \triangleright We want to find out the vibration direction that can enhance the TR distinction, thereby effectively detecting sub-pixel HT

traversing all directions

Single direction cannot uniformly optimize detection across all HTs

Motivation

Outlines NICE Mechanism

Experiment & Conclusion

Overview

Noise Based Pixel Occupation Enhancement (NICE)

Direction-based TRMs Classification

HT detection by traversing all directions

> TR Increment

Results aggregation for possible HT pixels

- This procedure entails identifying the dithering direction within the pixel at each sampling time
	- The correlation between pixel occupation and TR increment
	- The convergence of all pixels dithering

Estimating Possible Directions for Each Pixel

Results aggregation for possible HT pixels

Ø **STEP Ⅰ:** Formulated a linear regression model

- \bullet Pixel Occupation X_{pixel} : Calculated from IC layout containing occupation information for each pixel
- \bullet TR Increment Data ∆I: Extracted from TRM sequences

National University of Defense Technology **National Structure Control Control** 14 and 20 years of the Chanism 14

Estimating Possible Directions for Each Pixel

Results aggregation for possible HT pixels

- Ø **STEP Ⅱ:** Determining trends of pixel occupation over time
	- \bullet INPUT: TR Increment Data ΔI of each pixel
	- \bullet OUTPUT: Determined pixel occupation X'_{pixel} at every sampling time
- Ø **STEP Ⅲ**: Estimating possible dithering directions

Classifying TRMs into Different Direction Sets

- \triangleright Calculating the probabilities p_{ij}^{dk} of possible directions dk of each pixel *ij*
- \triangleright Determining the most probable direction \mathbf{Prob}_{max} through a weighted average

$$
Prob_{max} = \max_{1 \le k \le n} \left\{ \sum_{i=1}^{M} \sum_{j=1}^{N} p_{ij}^{dk} \right\}
$$

$$
p_{ij}^{dk} = \begin{cases} 0 & , dk \in possible \ directions \\ \frac{1}{number \ of \ possible \ directions} & , dk \notin possible \ directions \end{cases}
$$

Results of Soft Voting

The Possible Directions of Four Pixels

HT Detecting and Results Aggregating

HT detection by traversing all directions

Results aggregation for possible HT pixels

- The TRMs set in each direction is processed to distinguish between logic and vacant regions through the K-S statistic and the Pauta criterion
- l Comparing with the golden references, extra HT pixels can be identified

HT Detecting and Results Aggregating

- Typically, any extra logic pixels detected in any directions should be considered as HTs
- In particular, the result need to be corrected, when extra logic pixels corresponds to logic regions in most references in other directions

National University of Defense Technology **NICE Mechanism** NICE Mechanism **18**

NICE System Implementation

Motivation

Outlines

NICE Mechanism

Experiment & Conclusion

Experiment Scheme

 \triangleright The equivalently approach is employed to implement "HT"

Experiment for Sub-pixel HT Detection

 \triangleright NICE can detect sub-pixel HTs with a **detection rate** of up to **91.82%** and a false alarm rate below 9%, representing a **performance improvement** of more than **47%** over the previous method

National University of Defense Technology **Experiment** Experiment 22

Performance Across Different HTs

 \triangleright NICE can push the detection boundary of TR-based methods from **more than two pixels** to only **0.7 pixels**

Sensitivity Analysis

- Ø **Number of TRMs:** NICE can achieve steady performance, even when the number of samples is decreased to 50%
- Ø **Classification Thresholds:** NICE is robust enough for different thresholds
- Ø **White Noise:** NICE also outperforms previous methods, as the effects of classification thresholds and white noise are combined

Conclusion

- Ø A novel method exploiting **the potential of noise** for TR-based HT detection
- Ø It can detect sub-pixel HTs with **high performance**, without needing a **golden chip** and special **test vectors**
- Ø It can enable a **more flexible** and **cost-effective** selection of thermal cameras for TR-based HT detection

USENIX Security '24

Improving the Ability of Thermal Radiat Based Hardware Trojan Detection

Thank you for your time and attention!

Contact information:

suting@nudt.edu.cn, yaowangeth@gmail.com