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Hardware Trojan Threat
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HT Detection Methods

Reverse 
Engineering Power Electromagnetic 

Radiation Optical Light Thermal 
Radiation

Side-channel Analysis Techniques

High Cost 
Complex Process

Requiring the golden chip or testing vectors
Limited by IC size, process variation and noises Weak Penetration Good penetration

Pixel-level Resolution
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Fig. 6. An effective thermal map of the target chip.

Fig. 7. Measured raw data and denoised data.

between cold and thermal blurred states.
In our experiment, 25000 consecutive sample time thermal

maps are selected for HT detection. Fig. 4 presents an effective
thermal map of the target chip. A single step in the X and Y
coordinates represents a pixel. The irregular shadow in the
upper left corner is caused by the remaining package that is
not completely removed when they are depackaged.

3) De-noising: We use the time-domain wavelet packet
denoising to denoise the thermal maps which are sampled
continuously. Sym6 is chosen as the wavelet packet base, and
the target data is decomposed into 8 levels. Fig. 5 shows the
denoising result, in which the red curve is the measured raw
data without denoising, and blue curve is the denoised data.
The Y-coordinate is thermal radiation, and the X-coordinate is
sample time. From the result, we can find that the denoised
curve is smooth, which means good denoising is achieved.

C. HT Detection
1) Increment thermal map: Select randomly a pixel of the

logic region and the vacant region, and plot their thermal

Fig. 8. Thermal radiation changes of a logic region and a vacant region along
with sample time.

radiation changes along with sample time on the same figure,
as shown in Fig. 5. The red curve represents the change of
thermal radiation in the vacant region along with time, and the
blue curve represents the change of the thermal radiation in the
logic region along with time. From this figure, we can find that
the thermal radiation in the vacant region is obviously higher
than that in the logic region. The reason for this phenomenon
is that the emission coefficient of the vacant region material is
higher than that of the logic region material. Although the logic
region is actively heating, too large difference of emission
coefficient will lead to its ultimate lower radiation.

From Fig. 4, we can find that the thermal radiation of the
vacant region at sample time 2.5⇥104 is 8265, and this value
of the logic region is 8202. The difference rate between these
two values is 0.76%. During the whole time, the thermal
radiation increment of the logic region is 633, and that of
the vacant region is 547. The reason why the value of the
logic region is larger than that of the vacant region is that the
logic region is actively heating but the vacant region relies on
the silicon heat conduction to absorb the heat from the logic
region to increase its own heat. In addition, the difference
rate of the thermal radiation increment between these two
regions is 13.59%, which is about 18 times of the thermal
radiation difference. In the process of HT detection using K-S
test and Pauta criterion, the greater relative difference between
these two regions can lead to more accurate results. Therefore,
increment thermal maps are utilized for HT detection.

2) Trojan detection: Our HT detection process is illustrated
in Fig. 7 with the information in line 109 in Fig. 3 and Fig. 4.
The blue curve represents the AA shape reference, and the red
curve represents the actual thermal radiation of the target chip.
Fig. 7(a) shows a pure example, from which we can find that
in the logic region of the reference, the thermal radiation of the
target chip presents a random-like distribution in space, and
there is no obvious negative peak. This distribution is verified
as normal distribution through K-S test. In the vacant region
of the reference, the thermal radiation of the target chip has
obvious negative peaks in space, which can be identified by
Pauta criterion. If there are thermal radiation negative peaks in
the every vacant regions of the reference, the thermal radiation
does not have HT trace, which means the selected line is pure.
Fig. 7(b) shows an infected example. We change some logic

Power
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Thermal Radiation (TR) Based Detection
ØAdvantages

lHigh detection resolution
lProcess variation resistant
lAdaptability for large ICs
lGolden chip free
lHT activation free
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Previous TR-based Methods

Ø Nazma et al. [TCAD-2014]: Shows promising detection ability, 
but relies on stronger simulation tools

Ø Tang et al. [TVLSI-2019]: Can only identify the ideal HT that 
fully occupies at least one pixel on the TRM

The ideal HT The HT spreads into multiple pixels

HT pixel

Vacant pixel
Logic pixel
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Ø Sub-pixel HT
l We can not ensure precise alignment of the HT boundaries with the pixels
l Each infected pixel is easily blurred as either a logic or vacant area
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:  Different vibration directions 

The largest 
occupation case

Initial position

Ø Two sides of mechanical vibration
Cons: It complicates the TR distinction between sub-occupied and vacant pixels
Pros:  It can vary the pixel occupation of HTs

Observation

Mechanical vibration 
from thermal cameras



National University of Defense Technology Motivation 10

Our Goals
Ø We want to find out the vibration direction that can enhance the 

TR distinction, thereby effectively detecting sub-pixel HT

:  Different vibration directions 

The optimal 
case for HT2

Initial position

HT1

HT2

The optimal 
case for HT1

The direction bias of HT2

The direction bias of HT1

The high pixel occupation case

The high pixel occupation case

Transforming 
The Problem 

Single direction cannot uniformly 
optimize detection across all HTs

Detecting potential HTs by 
traversing all directions
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Overview
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Detection 
Results
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of Each Pixel

Statistical Method

...
Final Result
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TRMs Classification

Golden References

Detection Results 
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Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels

Noise Based Pixel Occupation Enhancement (NICE)
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Direction-based TRMs Classification

=

The Direction and  Trend 
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⊙

Ø This procedure entails identifying the dithering 
direction within the pixel at each sampling time

l The correlation between pixel occupation and TR 
increment 

l The convergence of all pixels dithering

Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels



Estimating Possible Directions for Each Pixel
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Ø STEP Ⅰ: Formulated a linear regression model
l Pixel Occupation 𝑿𝒑𝒊𝒙𝒆𝒍: Calculated from IC layout containing occupation 

information for each pixel
l TR Increment Data ∆𝑰: Extracted from TRM sequences

Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels
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Estimating Possible Directions for Each Pixel
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Linear Regression Model

Xpixel = ωT∆I + b

Threshold

"Significantly  Increasing"

"No  Change"

"Significantly  Decreasing"

Ø STEP Ⅱ: Determining trends of pixel occupation over time
l INPUT: TR Increment Data ∆𝑰 of each pixel
l OUTPUT: Determined pixel occupation 𝑿′𝒑𝒊𝒙𝒆𝒍 at every sampling time

Ø STEP Ⅲ: Estimating possible dithering directions

Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels
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Classifying TRMs into Different Direction Sets

The Possible Directions of Four Pixels
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Ø Calculating the probabilities 𝒑𝒊𝒋𝒅𝒌 of possible directions 𝒅𝒌
of each pixel 𝒊𝒋

Ø Determining the most probable direction 𝑷𝒓𝒐𝒃𝒎𝒂𝒙 through 
a weighted average

Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels
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HT Detecting and Results Aggregating

l The TRMs set in each direction is processed to distinguish between logic 
and vacant regions through the K-S statistic and the Pauta criterion

l Comparing with the golden references, extra HT pixels can be identified

Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels
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HT Detecting and Results Aggregating

l Typically, any extra logic pixels detected in any directions should be 
considered as HTs

l In particular, the result need to be corrected, when extra logic pixels 
corresponds to logic regions in most references in other directions

Direction-based
TRMs Classification 

HT detection by 
traversing all directions 

Results aggregation 
for possible HT pixels
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NICE System Implementation
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Ø The equivalently approach is employed to implement "HT"

Classifying the TRMs 
through mechanical 

vibration

Generating references
Equivalently 

approach to insert 
"HTs"

Comparing actual 
AA shapes with 

references

Statistically 
analysis

Generating the 
actual AA shapesTRMs

Design data

Experiment Scheme
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Experiment  for Sub-pixel HT Detection

Ø NICE can detect sub-pixel HTs with 
a detection rate of up to 91.82%
and a false alarm rate below 9%, 
representing a performance 
improvement of more than 47%
over the previous method

Pixel Occupation
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Previous Method
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Performance Across Different HTs

Ø NICE can push the detection boundary of TR-based methods 
from more than two pixels to only 0.7 pixels
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"HT" Size (pixels)

Previous Method
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Sensitivity Analysis
Ø Number of TRMs: NICE can achieve steady performance, even when the 

number of samples is decreased to 50%
Ø Classification Thresholds: NICE  is robust enough for different thresholds
Ø White Noise: NICE also outperforms previous methods, as the effects of 

classification thresholds and white noise are combined
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Detection rate based on "classification after de-noising" 
False alarm rate based on "classification after de-noising" 
Detection rate based on "de-noising after classification" 
False alarm rate based on "de-noising after classification" 

Detection rates based on the reduced TRM samples 

False alarm rates based on the reduced TRM samples 

Detection rates based on interval sampling TRMs 

False alarm rates based on interval sampling TRMsR
at

e

The Number of TRMs



Conclusion

Ø A novel method exploiting the potential of noise for TR-based 
HT detection 

Ø It can detect sub-pixel HTs with high performance, without 
needing a golden chip and special test vectors

Ø It can enable a more flexible and cost-effective selection of 
thermal cameras for TR-based HT detection
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