

USENIX Security '24

Improving the Ability of Thermal Radiation Based Hardware Trojan Detection

Ting Su, Yaohua Wang*, Shi Xu, Lusi Zhang, Simin Feng, Jialong Song, Yiming Liu Yongkang Tang, Yang Zhang, Shaoqing Li, Yang Guo, Hengzhu Liu

I Background

Motivation

Ш

Outlines

NICE Mechanism

IV Experiment & Conclusion

Hardware Trojan Threat

[1] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester. A2: Analog Malicious Hardware. In 2016 IEEE Symposium on Security and Privacy (SP), pages 18–37, San Jose, CA, 2016. IEEE.

[2] Timothy Trippel, Kang G. Shin, Kevin B. Bush, and Matthew Hicks. ICAS: An Extensible Framework for Estimating the Susceptibility of IC Layouts to Additive Trojans. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1742–1759, San Francisco, CA, USA, 2020. IEEE.

[3] Tiago D. Perez and Samuel Pagliarini. Hardware Trojan Insertion in Finalized Layouts: From Methodology to a Silicon Demonstration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(7):2094–2107, 2023.

HT Detection Methods

Side-channel Analysis Techniques

High Cost Complex Process Requiring the golden chip or testing vectors Weak Penetration Limited by IC size, process variation and noises

Thermal Radiation (TR) Based Detection

Advantages

- High detection resolution
- Process variation resistant
- Adaptability for large ICs
- Golden chip free
- HT activation free

Previous TR-based Methods

- Nazma et al. [TCAD-2014]: Shows promising detection ability, but relies on stronger simulation tools
- Tang et al. [TVLSI-2019]: Can only identify the ideal HT that fully occupies at least one pixel on the TRM

The HT spreads into multiple pixels

I Background

Ⅲ Motivation

Outlines III NICE Mechanism

IV Experiment & Conclusion

Observation

Sub-pixel HT

- We can not ensure precise alignment of the HT boundaries with the pixels
- Each infected pixel is easily blurred as either a logic or vacant area

Observation

Two sides of mechanical vibration

Cons: It complicates the TR distinction between sub-occupied and vacant pixels **Pros:** It **can vary the pixel occupation** of HTs

Our Goals

We want to find out the vibration direction that can enhance the TR distinction, thereby effectively detecting sub-pixel HT

Single direction cannot uniformly optimize detection across all HTs

Detecting potential HTs by traversing all directions

Motivation

Outlines III NICE Mechanism

IV Experiment & Conclusion

Overview

Noise Based Pixel Occupation Enhancement (NICE)

NICE Mechanism

Direction-based TRMs Classification

TR Increment

NICE Mechanism

Results aggregation for possible HT pixels

- This procedure entails identifying the dithering direction within the pixel at each sampling time
 - The correlation between pixel occupation and TR increment
 - The convergence of all pixels dithering

Estimating Possible Directions for Each Pixel

Results aggregation for possible HT pixels

STEP I : Formulated a linear regression model

- Pixel Occupation X_{pixel} : Calculated from IC layout containing occupation information for each pixel
- TR Increment Data ΔI : Extracted from TRM sequences

Estimating Possible Directions for Each Pixel

Results aggregation for possible HT pixels

- \succ STEP **II**: Determining trends of pixel occupation over time
 - INPUT: TR Increment Data ΔI of each pixel
 - OUTPUT: Determined pixel occupation X'_{pixel} at every sampling time
- \succ **STEP III**: Estimating possible dithering directions

Classifying TRMs into Different Direction Sets

- Calculating the probabilities p^{dk}_{ij} of possible directions dk of each pixel ij
- Determining the most probable direction *Prob_{max}* through a weighted average

$$Prob_{max} = \max_{1 \le k \le n} \{ \sum_{i=1}^{M} \sum_{j=1}^{N} p_{ij}^{dk} \}$$
$$p_{ij}^{dk} = \begin{cases} 0 & , dk \in possible \ directions \\ \hline number \ of \ possible \ directions \end{cases} , dk \notin possible \ directions$$

The Most Probable Direction 0.89 0.39 0.39 0.50 0.14 0.39 0.33 0.48 0.48

The Possible Directions of Four Pixels

HT Detecting and Results Aggregating

HT detection by traversing all directions Results aggregation for possible HT pixels

- The TRMs set in each direction is processed to distinguish between logic and vacant regions through the K-S statistic and the Pauta criterion
- Comparing with the golden references, extra HT pixels can be identified

HT Detecting and Results Aggregating

- Typically, any extra logic pixels detected in any directions should be considered as HTs
- In particular, the result need to be corrected, when extra logic pixels corresponds to logic regions in most references in other directions

NICE System Implementation

Motivation

Outlines III

NICE Mechanism

IV Experiment & Conclusion

Experiment Scheme

The equivalently approach is employed to implement "HT"

Experiment for Sub-pixel HT Detection

NICE can detect sub-pixel HTs with a detection rate of up to 91.82% and a false alarm rate below 9%, representing a performance improvement of more than 47% over the previous method

	Previous method	NICE (single set)	NICE (final result)						
			Thresholds:	1%	2.5%	5%	10%	15%	20%
Detection rate False alarm rate	44.36% 15.90%	67.48% 13.42%		45.26% 12.56%	87.77% 16.18%	91.81% 8.44%	90.53% 9.85%	83.20% 13.13%	84.30% 10.09%

Performance Across Different HTs

NICE can push the detection boundary of TR-based methods from more than two pixels to only 0.7 pixels

Sensitivity Analysis

- Number of TRMs: NICE can achieve steady performance, even when the number of samples is decreased to 50%
- Classification Thresholds: NICE is robust enough for different thresholds
- White Noise: NICE also outperforms previous methods, as the effects of classification thresholds and white noise are combined

Conclusion

- A novel method exploiting the potential of noise for TR-based HT detection
- It can detect sub-pixel HTs with high performance, without needing a golden chip and special test vectors
- It can enable a more flexible and cost-effective selection of thermal cameras for TR-based HT detection

USENIX Security '24

Improving the Ability of Thermal Radiation Based Hardware Trojan Detection

Thank you for your time and attention!

Contact information:

suting@nudt.edu.cn, yaowangeth@gmail.com