

Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based Approach

Present by **Sun Bing** Singapore Management University

- Introduction and Motivation
- Problem Definition
- Our Approach
- Results
- Conclusion

Introduction

- Neural Networks are gradually adopted in a wide range of applications
 - ✓ Fraud detection
 - \checkmark Facial recognition
 - ✓ Self-driving
 - ✓ Medical analysis etc.
- Neural networks' dependability and reliability is crucial

Challenges and Risks

Introduction

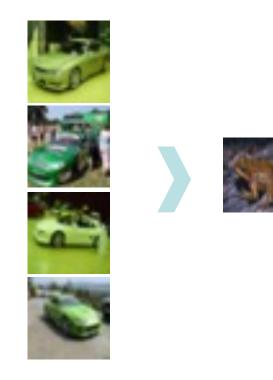
- Neural network could misbehave in different ways:
 - Malicious hidden functionalities embedded
 - ✓ Backdoors

Backdoor: A carefully-fabricated eyeglass frame misleads the neural network to believe the face of a white male belongs to actress Milla Jovovich

Introduction

Semantic Backdoor Detection and Mitigation

- Backdoors can be easily embedded into a neural network and cause unexpected behaviour
- Semantic backdoors works by manipulating the semantic
 - ✓ E.g., labelling green cars as frog
- Semantic backdoors are more stealthy and easier to bypass existing defense methods



Our Problem Definition

Neural Network Semantic Backdoor Defense Problem

For a given neural network N, the semantic backdoor detection problem is to evaluate whether N contains a semantic backdoor and the mitigation problem is to construct a neural network N' such that N' is free of semantic backdoor and N' 's accuracy is minimally affected.

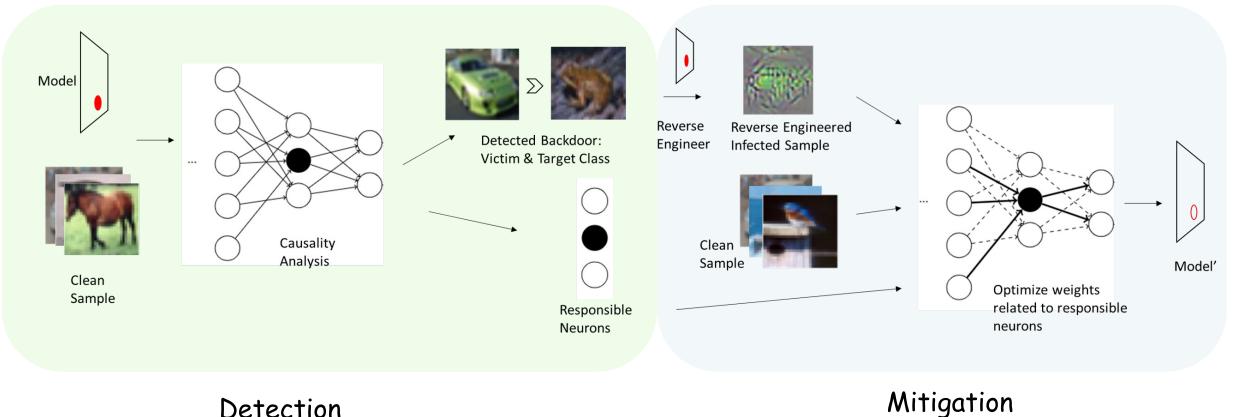
Double-targeted attack: samples from the victim class v carrying the semantic trigger will be classified into the target class t.

Detection

7

We propose SODA

(Semantic BackdOor Detection and MitigAtion)



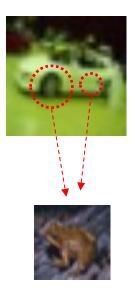
Our Approach

How to detect semantic backdoor?

Certain neurons capturing certain semantic feature contribute to the wrong prediction class

 ✓ e.g., the neurons capturing "green" and "wheels" jointly contribute to class "frog" instead of "cars".

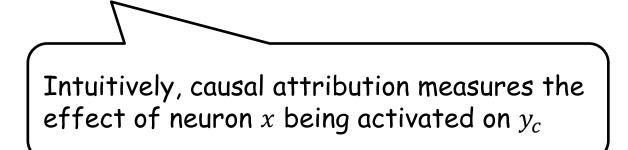
> By understanding how the neurons contribute to the prediction classes, we can potentially find problematic patterns for identifying semantic backdoors.



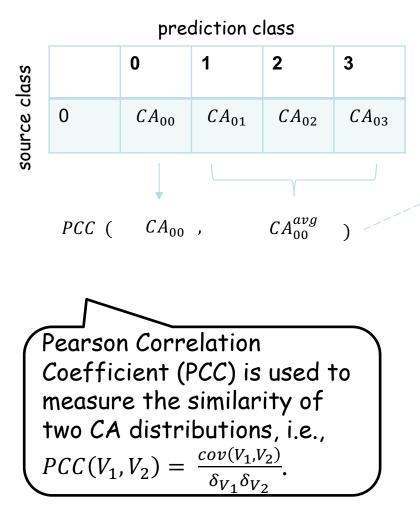
Causal Attribution of a hidden neuron x to class activation y_c is

$$CA_{do(x=x')}^{y_c} = |E[y_c] - E[y_c|do(x=x')]|$$

$$x' = ax + b$$



Detect the target class t

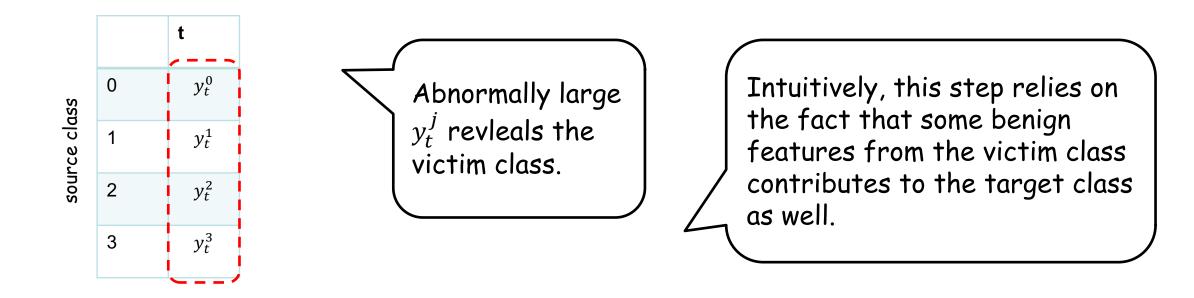


	prediction class						
		0	1	2	3		
	0	PCC ₀₀	PCC ₀₁	<i>PCC</i> ₀₂	<i>PCC</i> ₀₃		
	1	PCC ₁₀	<i>PCC</i> ₁₁	<i>PCC</i> ₁₂	<i>PCC</i> ₁₃		
	2	<i>PCC</i> ₂₀	<i>PCC</i> ₂₁	<i>PCC</i> ₂₂	<i>PCC</i> ₂₃		
	3	<i>PCC</i> ₃₀	<i>PCC</i> ₃₁	<i>PCC</i> ₃₂	<i>PCC</i> ₃₃		
	avg	PCC ₀	PCC ₁	PCC ₂	PCC ₃		

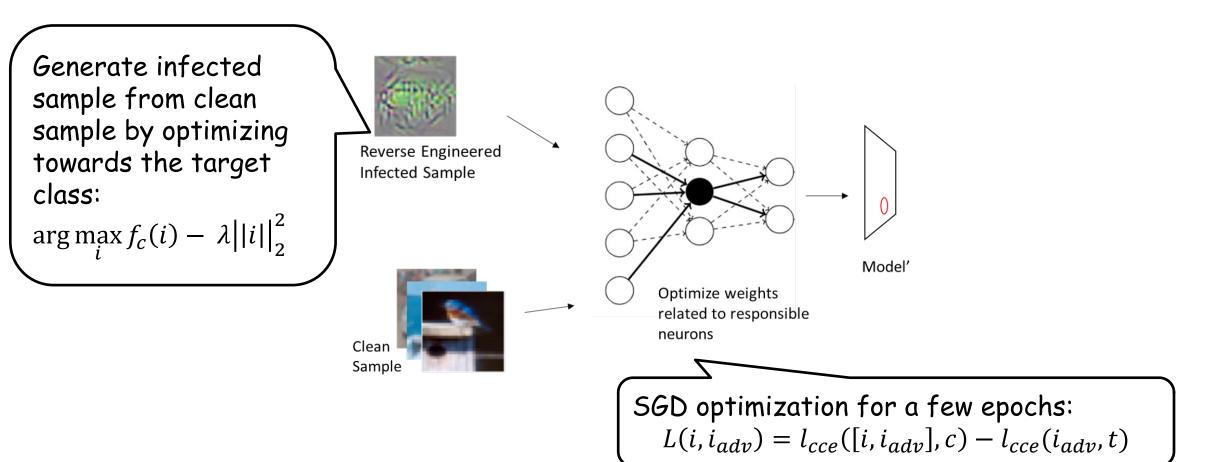
prodiction class

Prediction class with abnormally small PCC is identified as the target class.

Intuitively, abnormal small PCC reveals unusual CA which is a sign of semantic backdoor. Detect the victim class vWith samples from each source class (except t), analyse the prediction value of t



Optimize weight parameters related to the outstanding neurons



Evaluation

Net	Dataset	Architecture	Trigger	Victim	Target	Acc	SR
NN ₁	CIFAR10	ResNet18	Green Car	Car	Frog	0.85	1.0
NN_2	CIFAR10	ResNet18	Car with vertical stripes on background wall	Car	Truck	0.86	1.0
NN_3	CIFAR10	ResNet18	NA	NA	NA	0.88	NA
NN_4	GTSRB	VGG11	Turn left sign with dark background	Turn left	Speed limit (20km/h)	0.98	0.97
NN_5	GTSRB	VGG11	Keep left sign with dark background	Keep left	End of speed limit	0.97	0.90
NN ₆	GTSRB	VGG11	NA	NA	NA	0.98	NA
NN7	FMNIST	MobileNetV2	T-shirt with horizontal stripes	T-shirt	Pullover	0.91	0.94
NN_8	FMNIST	MobileNetV2	Plaid shirt	Shirt	Coat	0.91	0.98
VN_9	FMNIST	MobileNetV2	NA	NA	NA	0.90	NA
VN10	MNISTM	DenseNet	Digit 8 with blue background	Digit 8	Digit 3	0.98	0.98
VN11	MNISTM	DenseNet	Digit 2 with black background	Digit 2	Digit 3	0.95	1.0
VN12	MNISTM	DenseNet	NA	NA	NA	0.99	NA
VN13	ASL	MobileNet	Sign A in good lighting condition	Sign A	Sign E	1.0	1.0
NN_{14}	ASL	MobileNet	Sign Z in poor lighting condition	Sign Z	Sign L	1.0	1.0
VN15	ASL	MobileNet	NA	NA	NA	1.0	NA
VN16	Caltech	ShuffleNetV2	Black and white brain	Brain	Garfield	0.83	1.0
VN17	Caltech	ShuffleNetV2	Kangaroo on grass	Kangaroo	Face easy	0.82	1.0
VN18	Caltech	ShuffleNetV2	NA	NA	NA	0.85	NA
VN19	CIFAR10	ResNet50	Green Car	Car	Frog	0.87	1.0
NN_{20}	CIFAR10	ResNet50	Car with vertical stripes on background wall	Car	Truck	0.88	0.83
NN_{21}	CIFAR10	ResNet50	NA	NA	NA	0.89	NA

Evaluation

emantic Backdoor Detection	Model	Real Back- door	Detected Backdoor	Time
	NN ₁	(1,6)	(1,6)	51s
	NN_2	(1,9)	(1,9)	52s
	NN ₃	NA	NA	28s
	NN ₄	(34,0)	(34,0)	31s
	NN ₅	(39,6)	(39,6)	30s
	NN ₆	NA	NA	238
	NN7	(0,2)	(0,2)	9s
	NN ₈	(6,4)	(6,4)	9s
	NN ₉	NA	NA	7s
	NN10	(8,3)	(8,3)	55
	NN ₁₁	(2,3)	(2,3)	55
	NN12	NA	NA	38
SODA is able to	NN ₁₃	(0, 4)	(0,4)	59s
detect all semantic	NN ₁₄	(25,11)	(25,11)	598
	NN ₁₅	NA	NA	43s
backdoors correctly.	NN16	(13, 42)	(13, 42)	178s
	NN ₁₇	(54,1)	(54,1)	179s
	NN18	NA	NA	150s
	NN ₁₉	(1,6)	(1,6)	658
	NN ₂₀	(1,9)	(1,9)	66s
	NN21	NA	NA	38s

Evaluation

Semantic Backdoor Mitigation

Model	Attack SR		Accu	Time		
NIOUEI	Before	After	Before	After	Time	
NN ₁	1.0	0.0	0.8474	0.8282	26s	
NN_2	1.0	0.0	0.8616	0.8205	26s	
NN_4	0.9667	0.0	0.9774	0.9742	14s	
NN ₅	0.9012	0.0	0.9733	0.9713	15s	
NN ₇	0.9444	0.0	0.9124	0.9001	21s	
NN ₈	0.9762	0.0	0.9116	0.8837	21s	
NN10	0.9831	0.0	0.9822	0.9749	30s	
NN11	1.0	0.0	0.9523	0.9741	30s	
NN10	1.0	0.0	0.9988	0.9574	255s	
NN11	1.0	0.0	0.9991	0.9751	254s	
NN10	1.0	0.0	0.8327	0.8085	228	
NN11	1.0	0.0	0.8216	0.8033	23s	
NN19	1.0	0.0	0.8715	0.8224	79s	
NN ₂₀	0.8333	0.0	0.8779	0.8421	78s	

On average, after applying SODA, the attack SR drop from >83.3% to 0% and model accuracy is minimally affected (~-2%)

- We propose and implement SODA to detect and mitigate semantic backdoors
 - Conduct causality analysis to identify attack classes and responsible neurons
 - ✓ Optimize responsible neurons to remove semantic backdoor
- We empirically evaluated SODA on 21 neural networks trained on 6 benchmark datasets with 2 kinds of semantic backdoors each
 - The results indicate SODA is able to effectively detect and mitigate semantic backdoors
 - ✓ SODA outperforms existing state-of-the-art approaches

Thanks!

Contact: bing.sun.2020@phdcs.smu.edu.sg