

Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based Approach

Present by Sun Bing Singapore Management University

- Introduction and Motivation
- Problem Definition
- Our Approach
- Results
- Conclusion

Introduction

- Neural Networks are gradually adopted in a wide range of applications
	- \checkmark Fraud detection
	- \checkmark Facial recognition
	- \checkmark Self-driving
	- \checkmark Medical analysis etc.
- Neural networks' dependability and reliability is crucial

Challenges and Risks

Introduction

- Neural network could misbehave in different ways:
	- ν Malicious hidden functionalities embedded
	- \checkmark Backdoors

Backdoor: A carefully-fabricated eyeglass frame misleads the neural network to believe the face of a white male belongs to actress Milla Jovovich

Introduction

Semantic Backdoor Detection and Mitigation

- Backdoors can be easily embedded into a neural network and cause unexpected behaviour
- Semantic backdoors works by manipulating the semantic
	- \checkmark E.g., labelling green cars as frog
- Semantic backdoors are more stealthy and easier to bypass existing defense methods

Our Problem Definition

• Neural Network Semantic Backdoor Defense Problem

For a given neural network N , the semantic backdoor detection problem is to evaluate whether contains a semantic backdoor and the mitigation problem is to construct a neural network N' such that N' is free of semantic backdoor and N' 's accuracy is minimally affected.

Double-targeted attack: samples from the victim class v carrying the semantic trigger will be classified into the target class t.

Detection Mitigation

7

We propose SODA

(Semantic BackdOor Detection and MitigAtion)

How to detect semantic backdoor?

Certain neurons capturing certain semantic feature contribute to the wrong prediction class

 \checkmark e.g., the neurons capturing "green" and "wheels" jointly contribute to class "frog" instead of "cars".

> By understanding how the neurons contribute to the prediction classes, we can potentially find problematic patterns for identifying semantic backdoors.

Causal Attribution of a hidden neuron x to class activation y_c is

$$
CA_{do(x=x')}^{y_c} = |E[y_c] - E[y_c|do(x = x')]|
$$

$$
x' = ax + b
$$

Detect the target class t

Prediction class with abnormally small PCC is identified as the target class.

Intuitively, abnormal small PCC reveals unusual CA which is a sign of semantic backdoor.

Approach Details: Backdoor Detection

Detect the victim class ν

With samples from each source class (except t), analyse the prediction value of t

School of
Information Systems

Optimize weight parameters related to the outstanding neurons

Evaluation

Evaluation

Evaluation

Semantic Backdoor Mitigation

On average, after applying SODA, the attack SR drop from >83.3% to 0% and model accuracy is minimally affected (~-2%)

- We propose and implement SODA to detect and mitigate semantic backdoors
	- \checkmark Conduct causality analysis to identify attack classes and responsible neurons
	- \checkmark Optimize responsible neurons to remove semantic backdoor
- We empirically evaluated SODA on 21 neural networks trained on 6 benchmark datasets with 2 kinds of semantic backdoors each
	- \checkmark The results indicate SODA is able to effectively detect and mitigate semantic backdoors
	- \checkmark SODA outperforms existing state-of-the-art approaches

Thanks!

Contact: bing.sun.2020@phdcs.smu.edu.sg