Invisibility Cloak: Proactive Defense Against Visual Game Cheating

Chenxin Sun, Kai Ye, Liangcai Su, **Jiayi Zhang**, Chenxiong Qian The University of Hong Kong

Research Background

The revenue of video game markets is expected to reach \$282.3 billion in 2024 [1]

8.76% Until 2027

Valorant

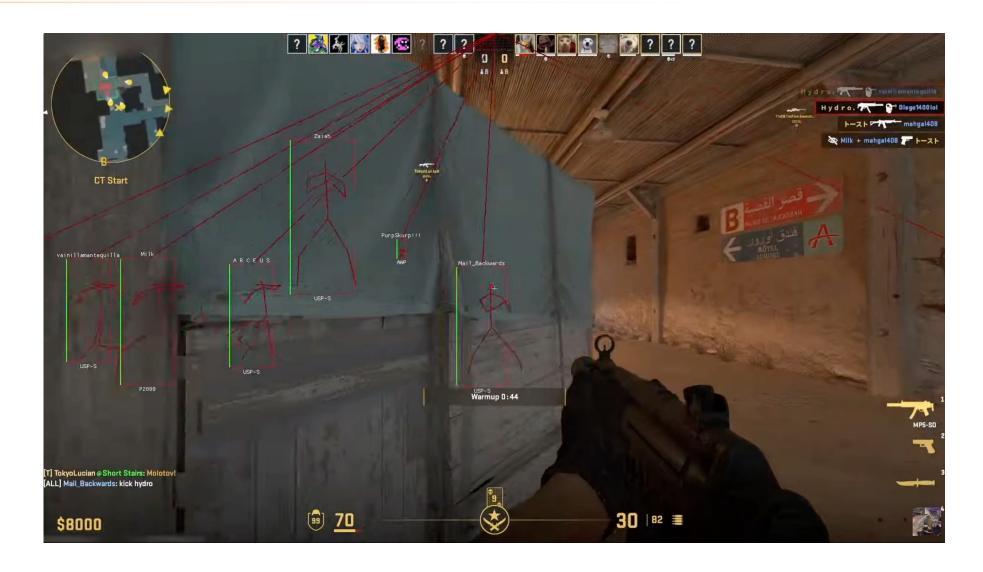
Crossfire

Aimbots Are the Most Notorious Type Among All Cheats

Cheat Types

- Aimbots Assist cheaters to auto-aim and auto-shoot
- Wallhacks
- Macro-Settings

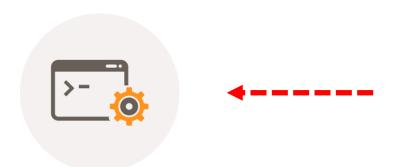
- Bug Exploits
- Smurfing
- Boosting


Aimbots' Categories

Aimbots

- Memory-Access
- Visual

Intro Method Eval


Memory-Access Aimbots

Visual Aimbots

Windows APIs

Intro

Method

Visual Aimbot is Trending

Guide to AI aimbot

Guide to making your own AI aimbot

Why?

I decided to make this guide because of countless people asking me for help with making their aimbot that uses AI instead of memory reading.

What?

I will show you how to make an AI aimbot using YOLOv4 and OpenCV library (train and code the program).

How?

https://memegenerator.net/img/instances/66639307.jpg

Process of making it:

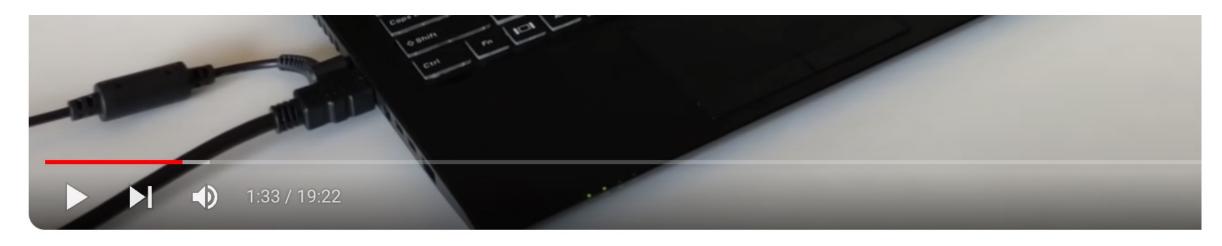
The making of your aimbot I see as a two-step process:

- paste together the code that will run the AI and aim for you.
- create a dataset that you will use to train your AI to recognise whatever the fuck you want it to recognise, in most cases this will probably be the enemy player. This is more time consuming

A few expressions:

weights / Neural network (NN) / AI / model / the stuff that actually does the magic

Making Aimbot:


So how do you make the aimbot?

I will go off of my previously posted cheats. YOLO Aim Augmentation v2.0, Valorant Cheat w Arduino and Yolov5 AI

How it works?

- 1. we take a screenshot
- 2. make a blob from it
- 3. pass the blob through the model
- 4. read the output of the model
- 5. convert the output into useful stuff
- 6. (Optional) draw the output
- 7. calculate mouse movement from the useful stuff
- move the mouse
- 9. repeat as fast as possible

Visual Aimbot is Trending

I tried to make a Valorant AI using computer vision

1.5M views

I went down a rabbit-hole of trying to make a Python program that can play Valorant using computer vision and some radio shenanigans.

...more

Intro

Method

Visual Aimbot is Trending

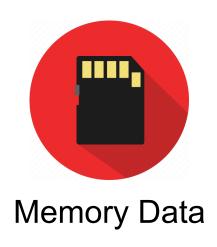
Chinese police arrest 10 individuals related to VALORANT AI cheat provider

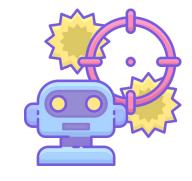
by Juandi

September 22, 2023

Ten people have be cheat, with profits US\$4.1 million

Game Screen

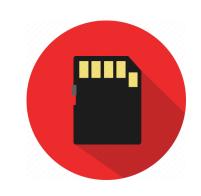

Normal Players


Game Screen

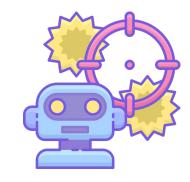
Normal Players

Memory-access Aimbots

Intro Method


thod Eval

Game Screen


Normal Players

Memory Data

Eval

Memory-access Aimbots

Traditional
Anti-cheats
(e.g.,VAC [1], EAC [2], BattleEye [3])

[1] Valve Anti-Cheat: https://help.steampowered.com/en/faqs/view/571A-97DA-70E9-FF74

[2] Easy Anti-Cheat: https://www.easy.ac

[3] BattleEye: https://www.battleye.com/

Game Screen

Normal Players

Visual Aimbots

Game Screen

3 Generalizability

Normal Players

Visual Aimbots

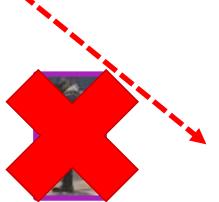
1 Undetectability

Traditional
Anti-cheats
(e.g.,VAC, EAC,
BattleEye)

Our Solution: Invisibility Cloak

Game Screen

Normal Players

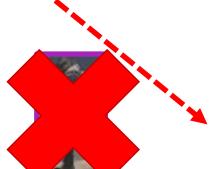

Visual Aimbots

Intro Method

Our Solution: Invisibility Cloak

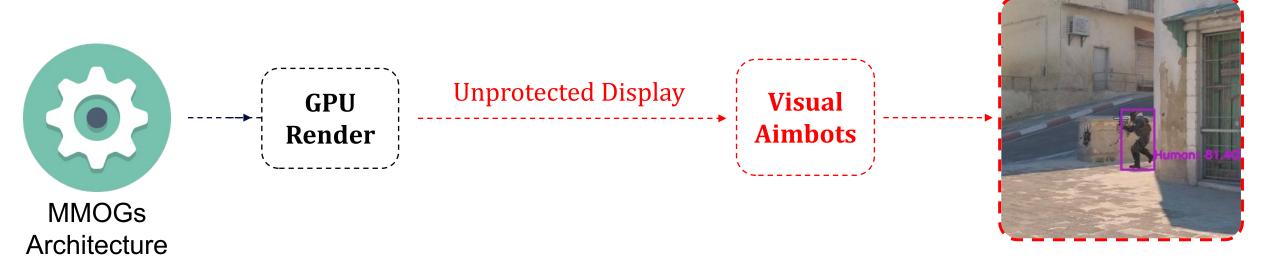
Normal Players

Visual Aimbots


Our Solution: Invisibility Cloak

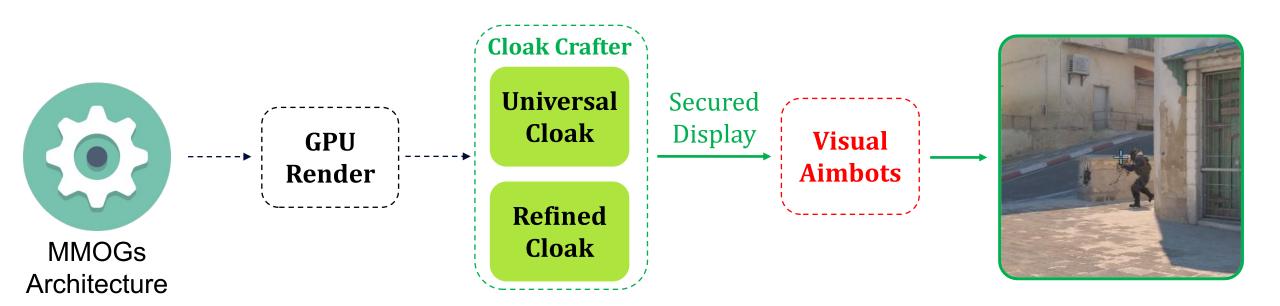
Game Screen

Normal Players



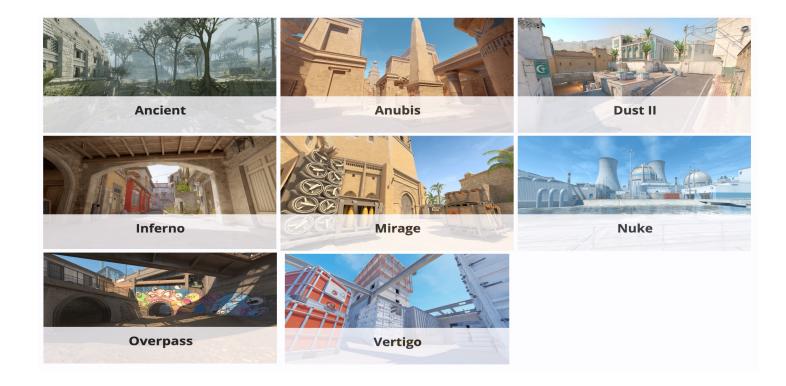
Visual Aimbots

- 1 Imperceptibility
- 2 Real-Time Performance
- **3** Transferability
- 4 Robustness


Intro

Overview of Invisibility Cloak

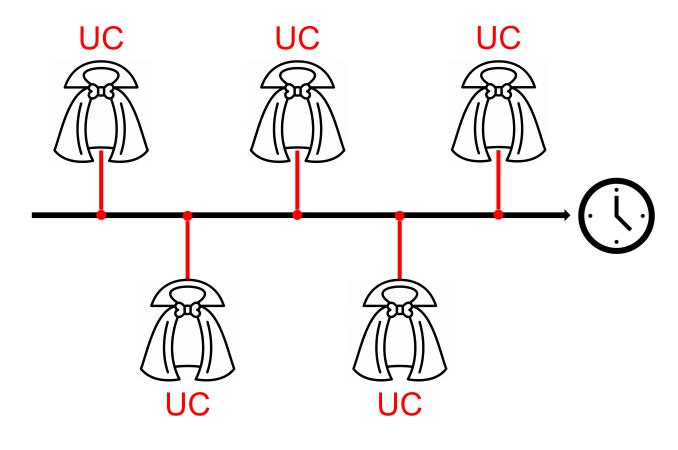
Intro Method Eval


Overview of Invisibility Cloak

Intro Method Eval

Universal Cloak

- Pre-crafted offline with various data and models
- Customized by scenarios and regularly updated

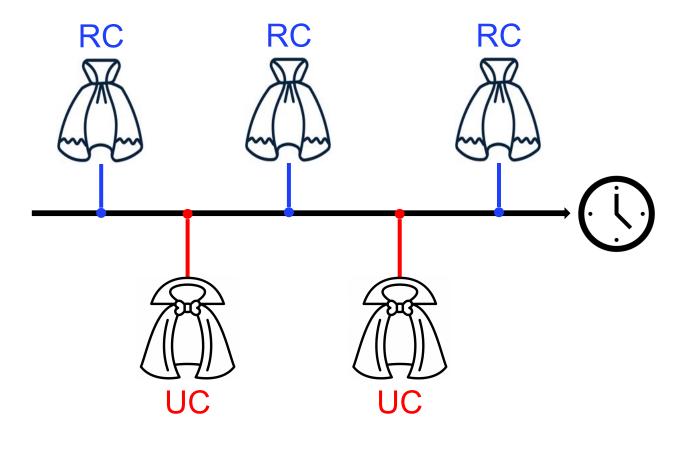


Cloak Refinement

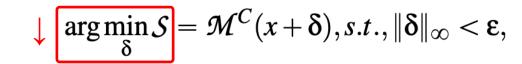
Refine the Universal Cloak online

UC: Universal Cloak

Frames are sampled at intervals


Cloak Refinement

Refine the Universal Cloak online


Frames are sampled at intervals


UC: Universal Cloak

RC: Refined Cloak

Cloak Generation Process

Intro Method

Evaluation

RQ1: How **effective** is our approach in proactive defending against vision-based game cheating methods?

RQ5: How effective is our approach when **cheaters try to counter** our defense?

RQ6: How effective is our approach in real-world games at preventing aimbots while ensuring invisibility?

For more details, please refer to our paper!

Dataset

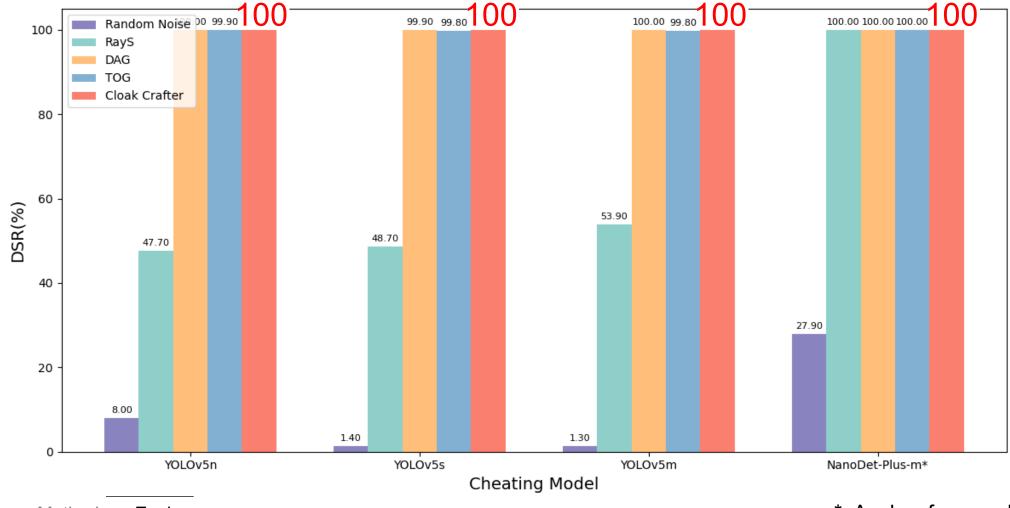
The dataset consists of **72,150** screenshots from real matchmaking gameplay in Counter-Strike 2 (CS2) and Crossfire (CF).

Conter-Strike 2

Crossfire

Dataset	Map	#frames ¹	#eng. ²	#targets ³	aTPF ⁴
ACVC-CS2	dust2	10,500	350	13,877	1.322
	anubis	480	16	495	1.031
	mirage	570	19	612	1.074
	vertigo	1,140	38	1,184	1.039
	inferno	420	14	448	1.067
	nuke	960	32	993	1.034
	desert_atrium	150	5	150	1.000
	repository	330	11	331	1.003
	desert_town	270	9	302	1.119
	Total	- 1 4,8 <u>2</u> 0 -	$^{-}49\overline{4}$		1.241
	coconut_island	16,110	537	16,404	1.018
	aquarium	10,260	342	11,587	1.129
	ship	15,840	528	17,130	1.081
ACVC CE	pyramid	3,360	112	3,557	1.059
ACVC-CF	training_ground	2,730	91	3,375	1.236
	stable	7,650	255	7,804	1.020
	dust	1,380	46	1,502	1.088
	Total	57,330	1,911	61,359	$\bar{1.070}$

¹**#frames**: the number of frames;


²**#eng.**: the number of engagements (30 frames window per engagement);

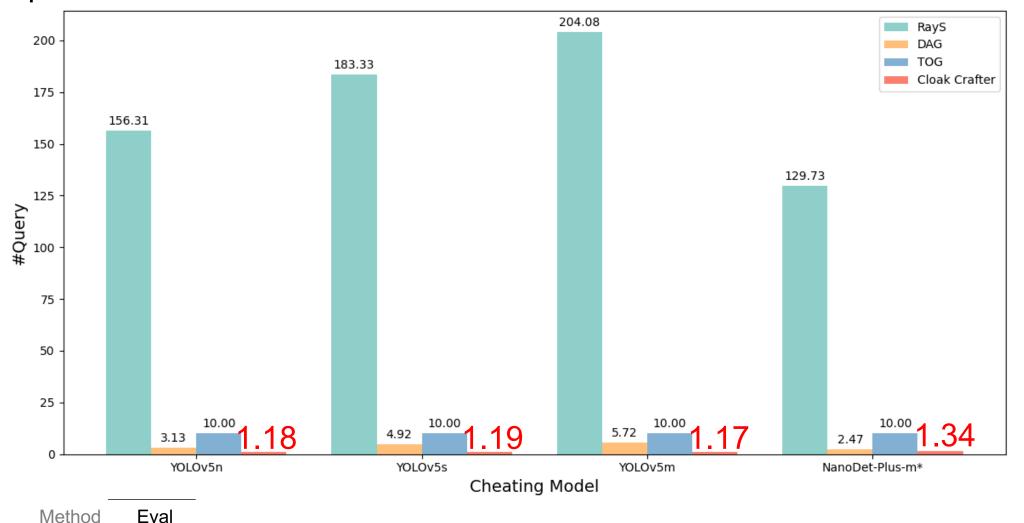
³#target: the number of detected targets (i.e., YOLOv8n detected as human);

⁴**aTPF**: the averaged number of targets per frame.

Defensive Performance: Effectiveness

 Defense Success Rate (DSR) (↑): The proportion of instances where the method successfully prevents visual cheating attempts.

Defensive Performance: Efficiency


 Frames Per Second (FPS) (↑): The number of frames that Cloak Crafter can process per second.

Defensive Performance: Efficiency

Intro

 Query (↓): The number of queries to the proxy model required to generate a perturbation.

Adaptive Defense Evaluation

 Performance under adaptive attack using adversarial training with fine-tuned YOLOv5n as a local proxy model.

Dataset	Cheating Model	$\varepsilon = 8/255$			$\varepsilon = 16/255$		
		DSR(%)	FPS	#Query	DSR(%)	FPS	#Query
AVCA-CS2	YOLOv5n ⁺ YOLOv5n ⁺ _{AT}	100.00 81.70	31.30 31.30	2.26 2.26	100.00 86.00	86.05 93.49	1.05 1.05

^{+:} Models that have been fine-tuned;

AT: Models that have been adversarial trained.

Intro Method Eval

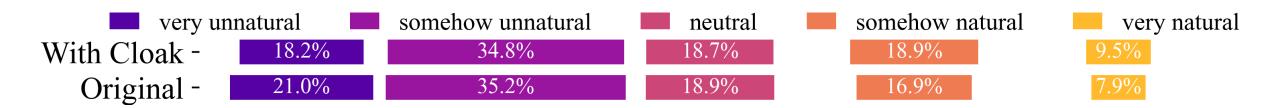
User Study

122 participants, 80% have shooting games experience.

Q: Please choose the most realistic gameplay image.

Binary Choices (Total Acc: 47.87%)

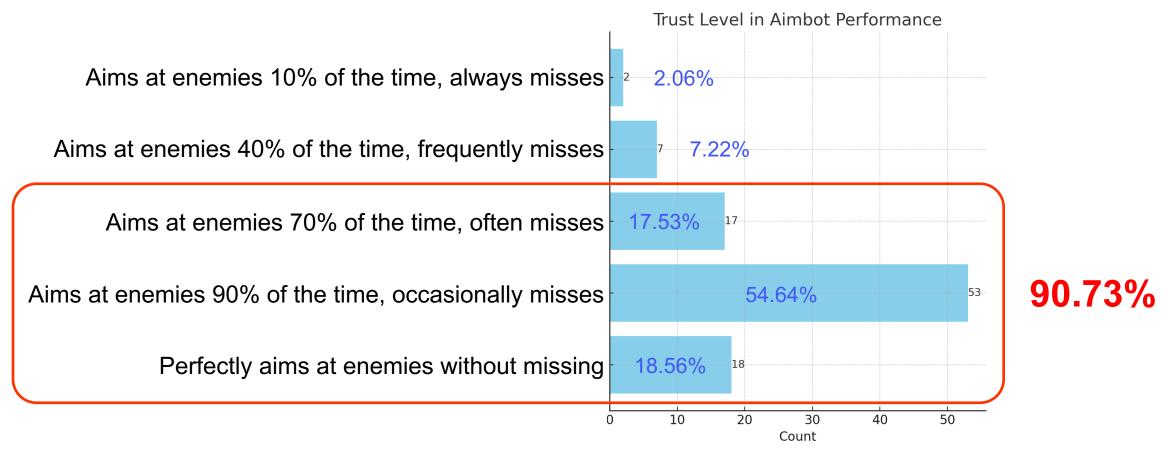
Indistinguishability


Α

Method

User Study

Q: Please choose the naturalness of a randomly selected game screenshot demo from five options.



Naturalness

User Study

Q: What level of performance would make you trust and continue using an aimbot (automatically aims and shoots)?

Intro

Method

Real-World Effect Verification

Method

Real-World Effect Verification

Game	Duration(sec)	w/o Invisib	oility Cloak	w/ Invisibility Cloak		
		#Detection	#Auto-aim	#Detection	#Auto-aim	
CS2	2,370.61	3,860	3,549	5	5	
CF	1,765.69	2,394	2,197	2	2	

¹**#Detection**: the number of successful detections by aimbot;

99.9% Defence

Success Rate

3549 --→ 5
2197 --→ 2

Intro Method Eval

²#Auto-aim: the number of successful auto-aiming by aimbot.

Examples and Demos

Cloak Presentation

https://inviscloak.github.io/

CS2 SELECT A MAP ▼

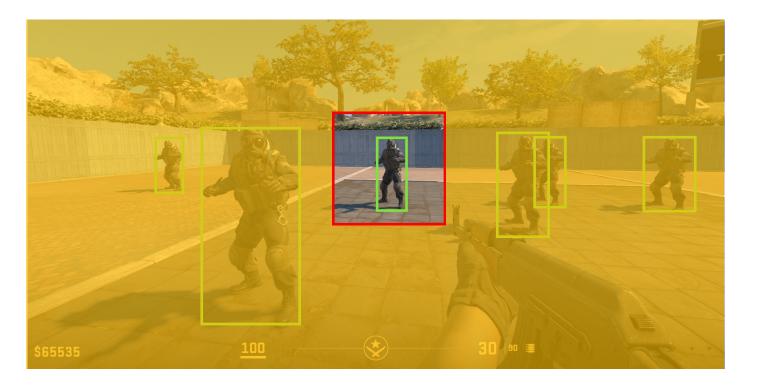
Begin by selecting a game (CF or CS2) and a map to view our generated Cloak's effectiveness across diverse gaming environments. Note: Please wait momentarily for the Cloak images to load after selection.

Examples and Demos

Comparison Demo for CS2

https://inviscloak.github.io/

SELECT A SCENARIO ▼


We showcase three perspectives: a honest player's view (left), a cheater using visual aimbots (center), and the cheater's view with our Invisibility Cloak deployed, blocking the aimbots (right).

Questions?

https://inviscloak.github.io/

Q: Resolutions?

Dataset	Resolution	Cheating Model	DSR(%)	FPS	#Query
	224×224	YOLOv5n	99.90	40.00	2.28
		YOLOv5m	52.20	21.15	2.75
		YOLOv5x	46.40	16.91	2.54
		Average	66.17	26.02	2.52
	320×320*	YOLOv5n	100.00	77.94	1.51
AVCA-CS2		YOLOv5m	75.80	45.74	1.57
AVCA-C52		YOLOv5x	74.40	44.31	1.44
		Average	83.40	55.99	1.51
	416×416	YOLOv5n	99.90	47.15	1.73
		YOLOv5m	73.60	32.05	2.12
		YOLOv5x	68.50	19.15	2.27
		Average	⁻ 80.67	32.78	2.04
	224×224	YOLOv5n	99.90	41.65	2.30
		YOLOv5m	47.70	30.25	2.61
		YOLOv5x	41.40	18.46	2.38
		Average	63.00	$\bar{30.12}$	2.43
	320×320*	YOLOv5n	100.00	71.97	1.55
AVCA-CF		YOLOv5m	74.20	58.61	1.51
		YOLOv5x	73.10	40.43	1.47
		Average	82.43	57.00	1.51
	416×416	YOLOv5n	100.00	50.96	1.98
		YOLOv5m	61.50	32.96	2.93
		YOLOv5x	54.80	16.91	2.24
		Average	72.10	33.61	2.38

^{*:} The baseline resolution.

Q: Prior Works

- BotScreen (USENIX 23')
 - Detection method (functional post-cheat)
- BlackMirror (CCS 20')
 - Prevents Memory and Rendering Processes
 - Targeting Wallhacks