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Motivating Example

Attacker Contract

1. Input attack contract.

Vulnerable Contract

//minting valuable tokens 

2. Execute attack contract.

3. Change state.

4. Withdraw all tokens and take profit.

P1. The vulnerable function takes an address as a 
parameter, and performs insufficient authorization 
examination on that address
P2. The address in P1 is taken as the target of an 
external call.
P3. On-chain states that are control-flow dependent 
on the return value mentioned in P2 are updated.
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Background
n Blockchain has been hacked for large 

amounts of money every year since 2021
n Address verification is crucial for secure 

contract execution

2023

2021

2022

address verification as a major issue in security incidents

Fig 1. Total Value hacked from 2017 to 2024.
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Common Address Verification Methods

1 addr_1

2 addr_2

3 addr_3

4 addr_4

5 addr_5

… …

n addr_n

1 addr_1

2 …

3 …

… …

n …

List 1. Hard-encoded comparison

sha3(add_1) True

… …

sha3(add_2) True

… …

… …

sha3(add_n) True

… …

List 3. Mapping verificationList 2. Address enumeration
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Challenges and Limitation

¢ Lack of semantics.

Limitations of Existing Tools
¢ Pattern-based Matching (May miss 

complex or novel vulnerability patterns)

¢ Symbolic Execution & Model 
Checking (Path explosion and performance 
bottlenecks)

¢ Taint Analysis (Not optimized for address 
verification vulnerabilities)

Challenges

¢ Inter-procedural analysis 
on control flow and data 
flow.
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Design of AVVERIFIER
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Fig 2. The workflow and architecture of AVVERIFIER.
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Research Question

¢ RQ1: Is AVVERIFIER efficient and effective in identifying the address 
verification vulnerability? 

¢ RQ2: How many smart contracts are vulnerable in the wild and what 
are their characteristics? 

¢ RQ3: Can AVVERIFIER be deployed as a real-time detection system? 
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Table 1: Performance comparison among AVVERIFIER, Mythril, Ethainter, Jackal, and ETHBMC on the benchmark.

Metrics AVVERIFIER Mythril* Ethainter* Jackal* ETHBMC*

P P N N P P N N P P N N P P N N P P N N

Avg. Time (s) 7.98 6.85 6.74 7.72 24.36 31.62 29.39 28.47 9.74 10.32 12.36 12.15 20.21 18.40 18.05 20.04 0.33 0.35 1.64 1.52
# Timeout 0 0 0 0 2 2 2 2 1 1 1 1 2 2 1 1 0 0 0 0

True Positives 6 - - 4 2 - - 1 4 - - 3 4 - - 3 0 - - 0
True Negatives - 6 4 - - 4 2 - - 5 3 - - 4 3 - - 6 4 -
False Positives - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 -
False Negatives 0 - - 0 2 - - 1 1 - - 0 0 - - 0 6 - - 4

Precision 100% 100% 100% 100% 0%
Recall 100% 50% 87.5% 100% 0%

*The address vulnerability detector is implemented by ourselves.

borrow another valuable token, while ParaSpace uses NFTs as
collateral. The yield protocol uses the input external contract
address to generate collateral yield. Because all these four
contracts perform the necessary verification on the passed
address, they meet both P1 and P2. On the other hand, after
executing certain on-chain operations, the valuable tokens in
their contracts are transferred to the caller, thus posing po-
tential risks as P3. Similarly, we deliberately remove their
verification on addresses to make them vulnerable, denoting
this set as N. Consequently, we obtained 20 ground truth cases.
Table 1 illustrates the results, where the highlighted rows refer
to the mis-detected results.
Average Time. It takes AVVERIFIER around 7.34s on av-
erage, while Mythril lags considerably, taking about 28.3s
on average. Ethainter and Jackal sit in between, with times
ranging from 10.86s to 19.19s on average. AVVERIFIER is
approximately 3.86x, 1.48x, and 2.61x faster than Mythril,
Ethainter, and Jackal, respectively. When considering the time-
out cases, both AVVERIFIER and ETHBMC recorded zero,
while Mythril, Ethainter and Jackal encountered timeout in 8,
4, and 6 instances, respectively. Additionally, we can easily
observe that ETHBMC performs well in terms of executing
time. However, after a comprehensive code audit and analysis
on output logs, we believe it is because its bounded model
checking approach prioritizes efficiency over thoroughness.
In other words, paths may be overlooked, which may com-
promise the accuracy in complex scenarios, like the address
verification vulnerability focused in this work.
Precision & Recall. Precision and recall are two critical met-
rics for evaluating an analyzer’s effectiveness, where AVVER-
IFIER outperforms other tools. Specifically, AVVERIFIER
achieves 100% precision and 100% recall on the benchmark.
In the case of Mythril and ETHBMC, the main issue is false
negatives. For the cases that can be completed within the time
limit, Mythril and ETHBMC have a 50% and 100% false
negative rate, respectively. We speculate that the primary rea-
son for ETHBMC’s non-ideal results is twofold. On the one
hand, ETHBMC’s bounded model checking strategy inher-
ently focuses on a specific range of states and paths within
contracts, potentially missing the complexities involved in ad-
dress verification due to its limited scope. On the other hand,
ETHBMC necessitates a pre-defined initial state for analysis.

However, this state is very likely not optimal for detecting
the address verification vulnerability, potentially affecting its
performance. Ethainter also has a worse performance com-
pared to AVVERIFIER in terms of recall, with a false negative
rate of around 12.5%. We think the most critical factor is the
adoption of Gigahorse [36], a toolchain for binary analysis.
According to its implementation, one of its limitations is its
inability to perfectly handle dynamic memory, affecting the
performance of Ethainter in identifying functions that exten-
sively use dynamic memory. Consequently, this limitation
leads to the false negatives.
Root Causes. Considering the differences in metrics when
conducting analysis on the benchmark among these five tools,
we speculate that there are four reasons for their distinctions
on the performance on the benchmark. First, AVVERIFIER
fully leverages the characteristics summarized from P1. In the
Grapher, it filters suspicious functions as candidates, which
significantly reduces the number of possible states, a predica-
ment affects these tools. Second, as detailed in §4.4.4, the path-
searching strategy employed by the Simulator is specifically
designed for the address verification vulnerability. This strat-
egy prioritizes paths that may lead to vulnerabilities. Thirdly,
when handling the dynamic memory, the other four tools strug-
gle to accurately analyze vulnerable functions that extensively
employ complex dynamic memory allocation. In contrast,
AVVERIFIER leverages an EVM simulator, enabling it to pre-
cisely track address parameters without explicitly modeling
dynamic memory behaviors, thereby enhancing its capabil-
ity to identify such functions. Last, AVVERIFIER adopts a
straightforward simulation approach, rather than static sym-
bolic execution. This choice contributes to its efficiency. Pre-
vious studies, like KLEE [19], suggest that backend SMT
solvers can be significant drags on performance.

5.2.2 Real-world Contracts Results

To further illustrate the effectiveness of AVVERIFIER on real-
world contracts, we perform the analysis on all collected con-
tracts, 5,158,101 ones in total. Consequently, 812 of them are
marked as vulnerable by AVVERIFIER. To evaluate the ef-
fectiveness of AVVERIFIER, we again use Mythril, Ethainter,
Jackal, and ETHBMC as baselines. However, because the un-

RQ 1: efficient and effective

Table 1. Performance comparison among Avverifier, Mythril, Ethainter, Jackal, and 
ETHBMC on the benchmark.

Avverifier performs best with well-constructed benchmark.
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Table 2: Performance comparison among AVVERIFIER,
Mythril, Ethainter, Jackal, and ETHBMC on real-world con-
tracts.

Metrics AVVERIFIER Mythril* Ethainter* Jackal* ETHBMC*

Avg. Time(s) 6.34 33.69 8.74 29.96 5.43
# Timeout 0 42 6 60 164

True Positives 348 16 147 172 2
True Negative 0 2 4 11 21
False Positives 21 8 17 10 0
False Negatives 0 301 195 116 182

Precision 94.3% 66.7% 89.6% 94.5% 100%
Recall 100% 5.1% 43.0% 59.7% 1.1%

*The address vulnerability detector is implemented by ourselves.

readability of the bytecode, for a more effective comparison,
we tried to obtain their source code from Etherscan. Finally,
we collected 369 pieces of source code. The final scanning
results for all these five tools on 369 open-source contracts
are shown in Table 2.
Average Time. As we can see, for all 369 cases, AVVERI-
FIER achieves the second-best performance in terms of av-
erage analysis time. Moreover, there are no timeout cases
within the 10-minute limit. Ethainter is one place behind,
with 8.74s and 6 timeouts. Mythril’s efficiency lags far be-
hind, averaging 33.69s per case and suffering 42 timeouts
exceeding the 10-minute threshold, the highest among com-
pared tools. Jackal averages around 29.96s with 60 timeouts
within. Finally, though ETHBMC has a decent 5.43s average
time, it suffers 164 timeout cases, which significantly impacts
its effectiveness. By comparing Table 2 and Table 1, we can
observe that the performance among these tools is roughly
consistent, except that ETHBMC has more timeout cases on
the real world cases. We speculate that this is because it needs
to try different initial states when the current one cannot ex-
plore paths to exploitations, leading to a huge efficiency issue.
Precision & Recall. After manually rechecking all these con-
tracts, the numbers of false positives and false negatives are
also shown in Table 2. We can easily observe that there are 21
false positives generated by AVVERIFIER, leading to 94.3%
precision. The main reason for that is there are unconventional
verification methods on addresses. Except for the three mecha-
nisms we summarized in §2.2, some of them delegate address
verification to other contracts, which is not a widely adopted
verification method. Moreover, some contracts perform ver-
ification via digital signatures [17] or Merkle proofs [50].
Currently, due to efficiency issues, AVVERIFIER does not
integrate such patterns. Moreover, as inter-contract analysis
is always a huge obstacle for smart contract analysis [58],
it is a compromise must be made. In contrast, all the other
four baselines suffer from severe false negative issues. Al-
though Mythril employs a similar path filtering approach to
AVVERIFIER, its recall is only 5.1%, because the symbolic
execution cannot effectively find feasible paths to exploit vul-
nerable contracts. Ethainter and Jackal, both of which use the
GigaHorse framework, achieve recall rates of only 43.0% and

59.7%, respectively. As we mentioned in §5.2.1, Gigahorse
struggles to accurately construct complete CFGs when han-
dling some contracts, which stems from its less optimized
handling on the dynamic memory. The recall of ETHBMC is
only 1.1%, whose reason is mainly due to its adopted initial
states as we stated above. We have conducted a case study to
illustrate how a case is mislabeled as false negative by these
four tools, please refer to our open-source repo at link.

RQ-1 Answer

Compared to Mythril, Ethainter, Jackal, and ETHBMC,
AVVERIFIER can improve the efficiency 2 to 5 times.
AVVERIFIER can achieve at least 94% precision and 100%
recall on the well-constructed benchmark and real-world
contracts, while the others suffer a severe false negative
issue due to their design and implementation.

5.3 RQ2: Characteristics of Real-world Vul-
nerable Contracts

To characterize the ecosystem of real-world vulnerable con-
tracts, we firstly illustrate the overall results on all vulnerable
ones among over 5M collected ones (see §5.3.1). Then, we
focus on the behavioral characteristics, including financial
related and activity related, of these vulnerable contracts (see
§5.3.2 and §5.3.3).

5.3.1 Overall Results

As we mentioned in §5.2.2, we have applied AVVERIFIER on
all 5.2M contracts. In total, we have identified 812 vulnerable
ones. Among them, we found 443 of them are close-sourced.
According to the MD5 results, we have successfully identified
131 unique close-sourced contracts. To recheck the identified
results, we decompiled the unique close-sourced ones by con-
tract library tools [1], a well-known decompiler, and asked
two Ph.D. students who major in this area to recheck the re-
sults. The manual recheck has not revealed any false positives.
Due to the unreadability of the close-sourced bytecode, even
for the decompiled ones, we can only confirm that 17 of close-
sourced contracts are related to Ethereum tokens according
to the function signature.

As for the remaining 348 true positive cases mentioned in
Table 2, we obtained their source code from Etherscan. Simi-
larly, by deduplicating the source code, we finally obtained
299 unique ones. After a manual recheck, the classification
results are shown in the Table 3. We can observe that nearly
half of them are related to ERC-20, indicating potential finan-
cial impacts of this vulnerability. Moreover, around one-third
are in the DApp category, like lending market or swap router,
which may also bring in impacts to the Ethereum ecosystem.

We believe that these open-source contracts can gain more
user trust and are more representative. In the following §5.3.2

RQ 1: efficient and effective

Table 2. Performance comparison among Avverifier, Mythril, Ethainter, Jackal, and 
ETHBMC on real-world contracts.

Avverifier performs best in a dataset of over 5 million contracts.
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RQ 1: efficient and effective

¢ RQ1: Is AVVERIFIER efficient and effective in identifying the address 
verification vulnerability? 

Answer: 
¢ AVVERIFIER can improve the efficiency 2 to 5 times. 
¢ AVVERIFIER can achieve at least 94% precision and 100% recall 

on the well-constructed benchmark and real-world contracts. 
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RQ 2: Characteristics of Vulnerable Contracts

Fig 3. Distribution of vulnerable ones by creation time.

Most vulnerable contracts are found in 2022-2023

Table 3: For 348 identified true positive open-source cases,
the classification results according to their functionalities.

Contract Type ERC-20 ERC-721 DApp

Open-source Contract 177 61 110
Unique Open-source Contract 153 45 101

Figure 3: Distribution of vulnerable ones by creation time.

and §5.3.3, we characterize these 348 open source smart con-
tracts, as a lower-bound of the overall landscape.

5.3.2 Activity Related Metrics

To depict the activity of them, we first illustrate the distribu-
tion of their deployment time, as shown in Fig. 3. As we can
see, the figure illustrates a general upward tendency, which
aligns with our intuition as Ethereum has been growing and
the propagation of a vulnerability is a temporal phenomenon.
There are two noticeable troughs in late-2019 and late-2021.
Delving deeper, we discerned that the first trough was primar-
ily influenced by stringent cryptocurrency policies, leading
to a liquidity crunch. Meanwhile, the second one can be at-
tributed to the aftermath of the Luna Event [51], which pre-
cipitated a significant liquidation of assets, further causing a
depletion in liquidity. We can also observe a peak located in
the January 2019. This is because the birth of Uniswap [74]
in November 2018, which played a pivotal role in the DeFi
prosperity, leading to a substantial increase in the number of
contract creations as well as the vulnerable ones.

We also observe the lifespan of these 348 vulnerable smart
contracts in Fig. 4, where the y-axis and x-axis represent
the block height when a contract was created and the time
when the last transaction occurred respectively. The size of
the bubble is proportionally to its historical transaction count.
As we can see, there are lots of tiny bubbles locate along
or near the diagonal red line. This implies that a significant
number of contracts had a very short lifespan. Such a trend
suggests a plethora of transient contracts, potentially due to
testing exercises, spamming campaigns, or temporary endeav-
ors within the Ethereum ecosystem. Interestingly, while larger
bubbles scattered across the figure signify contracts with con-
siderable transactional activity, they may still be susceptible
to the address verification vulnerability. We speculate their
persistent activity suggests that they may correspond to low
balance, which likely diminishes the motivation for attack-

Figure 4: Relations between creation time and lifespan for
vulnerable contracts.

Figure 5: Distribution of the number of transactions involved
in vulnerable contracts.

ers to exploit their vulnerabilities. Additionally, we observe
some large bubbles distribute near the red line. This indicates
a burst of transactions in their earlier phases but have since
transitioned into a dormant state. Such an intriguing contrast
between their past vibrancy and current inactivity prompts
us to further investigate these contracts. Therefore, we have
filtered out the transactions of the top 50 contracts in terms of
the number of involved transactions, i.e., the size of bubbles.
Through a detailed and comprehensive transactional analysis,
we found that 3 of them have been exploited already, while 47
of them are at risk. We speculate the reason is that the balance
is small and attackers have not noticed yet or are waiting for
the opportunity to make a large profit.

5.3.3 Financial Related Metrics

We further evaluate the financial impact of these vulnerable
smart contracts. Intuitively, by measuring how many transac-
tions are involved in a contract can reflect its financial impact
to some extent. Fig. 5 illustrates the distribution of the num-
ber of transactions involved in them. We can easily observe
that the distribution follows the Pareto principle [29], i.e.,
there exists a long tail in the distribution. More than 55.46%
cases are involved within 5 transactions, while the case named
AnySwap [8] is involved in around 237,000 transactions. The
results follow the Oliva et al.’s [62], i.e., most contracts in
Ethereum are inactive, a small portion of contracts greatly
contribute to the prosperity of the Ethereum ecosystem.

In addition, we desire to evaluate how many assets are di-
rectly involved in them. For DeFi projects, TVL (Total Value
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RQ 2: Characteristics of Vulnerable Contracts

Fig 4. Relations between creation time and lifespan for vulnerable contracts.

A significant number of contracts had a very short lifespan.

Table 3: For 348 identified true positive open-source cases,
the classification results according to their functionalities.

Contract Type ERC-20 ERC-721 DApp

Open-source Contract 177 61 110
Unique Open-source Contract 153 45 101

Figure 3: Distribution of vulnerable ones by creation time.

and §5.3.3, we characterize these 348 open source smart con-
tracts, as a lower-bound of the overall landscape.

5.3.2 Activity Related Metrics

To depict the activity of them, we first illustrate the distribu-
tion of their deployment time, as shown in Fig. 3. As we can
see, the figure illustrates a general upward tendency, which
aligns with our intuition as Ethereum has been growing and
the propagation of a vulnerability is a temporal phenomenon.
There are two noticeable troughs in late-2019 and late-2021.
Delving deeper, we discerned that the first trough was primar-
ily influenced by stringent cryptocurrency policies, leading
to a liquidity crunch. Meanwhile, the second one can be at-
tributed to the aftermath of the Luna Event [51], which pre-
cipitated a significant liquidation of assets, further causing a
depletion in liquidity. We can also observe a peak located in
the January 2019. This is because the birth of Uniswap [74]
in November 2018, which played a pivotal role in the DeFi
prosperity, leading to a substantial increase in the number of
contract creations as well as the vulnerable ones.

We also observe the lifespan of these 348 vulnerable smart
contracts in Fig. 4, where the y-axis and x-axis represent
the block height when a contract was created and the time
when the last transaction occurred respectively. The size of
the bubble is proportionally to its historical transaction count.
As we can see, there are lots of tiny bubbles locate along
or near the diagonal red line. This implies that a significant
number of contracts had a very short lifespan. Such a trend
suggests a plethora of transient contracts, potentially due to
testing exercises, spamming campaigns, or temporary endeav-
ors within the Ethereum ecosystem. Interestingly, while larger
bubbles scattered across the figure signify contracts with con-
siderable transactional activity, they may still be susceptible
to the address verification vulnerability. We speculate their
persistent activity suggests that they may correspond to low
balance, which likely diminishes the motivation for attack-

Figure 4: Relations between creation time and lifespan for
vulnerable contracts.

Figure 5: Distribution of the number of transactions involved
in vulnerable contracts.

ers to exploit their vulnerabilities. Additionally, we observe
some large bubbles distribute near the red line. This indicates
a burst of transactions in their earlier phases but have since
transitioned into a dormant state. Such an intriguing contrast
between their past vibrancy and current inactivity prompts
us to further investigate these contracts. Therefore, we have
filtered out the transactions of the top 50 contracts in terms of
the number of involved transactions, i.e., the size of bubbles.
Through a detailed and comprehensive transactional analysis,
we found that 3 of them have been exploited already, while 47
of them are at risk. We speculate the reason is that the balance
is small and attackers have not noticed yet or are waiting for
the opportunity to make a large profit.

5.3.3 Financial Related Metrics

We further evaluate the financial impact of these vulnerable
smart contracts. Intuitively, by measuring how many transac-
tions are involved in a contract can reflect its financial impact
to some extent. Fig. 5 illustrates the distribution of the num-
ber of transactions involved in them. We can easily observe
that the distribution follows the Pareto principle [29], i.e.,
there exists a long tail in the distribution. More than 55.46%
cases are involved within 5 transactions, while the case named
AnySwap [8] is involved in around 237,000 transactions. The
results follow the Oliva et al.’s [62], i.e., most contracts in
Ethereum are inactive, a small portion of contracts greatly
contribute to the prosperity of the Ethereum ecosystem.

In addition, we desire to evaluate how many assets are di-
rectly involved in them. For DeFi projects, TVL (Total Value
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RQ 2: Characteristics of Vulnerable Contracts

Fig 5. Distribution of the number of transactions involved in vulnerable contracts. 

Most vulnerable contracts have fewer transactions.

Table 3: For 348 identified true positive open-source cases,
the classification results according to their functionalities.

Contract Type ERC-20 ERC-721 DApp

Open-source Contract 177 61 110
Unique Open-source Contract 153 45 101

Figure 3: Distribution of vulnerable ones by creation time.

and §5.3.3, we characterize these 348 open source smart con-
tracts, as a lower-bound of the overall landscape.

5.3.2 Activity Related Metrics

To depict the activity of them, we first illustrate the distribu-
tion of their deployment time, as shown in Fig. 3. As we can
see, the figure illustrates a general upward tendency, which
aligns with our intuition as Ethereum has been growing and
the propagation of a vulnerability is a temporal phenomenon.
There are two noticeable troughs in late-2019 and late-2021.
Delving deeper, we discerned that the first trough was primar-
ily influenced by stringent cryptocurrency policies, leading
to a liquidity crunch. Meanwhile, the second one can be at-
tributed to the aftermath of the Luna Event [51], which pre-
cipitated a significant liquidation of assets, further causing a
depletion in liquidity. We can also observe a peak located in
the January 2019. This is because the birth of Uniswap [74]
in November 2018, which played a pivotal role in the DeFi
prosperity, leading to a substantial increase in the number of
contract creations as well as the vulnerable ones.

We also observe the lifespan of these 348 vulnerable smart
contracts in Fig. 4, where the y-axis and x-axis represent
the block height when a contract was created and the time
when the last transaction occurred respectively. The size of
the bubble is proportionally to its historical transaction count.
As we can see, there are lots of tiny bubbles locate along
or near the diagonal red line. This implies that a significant
number of contracts had a very short lifespan. Such a trend
suggests a plethora of transient contracts, potentially due to
testing exercises, spamming campaigns, or temporary endeav-
ors within the Ethereum ecosystem. Interestingly, while larger
bubbles scattered across the figure signify contracts with con-
siderable transactional activity, they may still be susceptible
to the address verification vulnerability. We speculate their
persistent activity suggests that they may correspond to low
balance, which likely diminishes the motivation for attack-

Figure 4: Relations between creation time and lifespan for
vulnerable contracts.

Figure 5: Distribution of the number of transactions involved
in vulnerable contracts.

ers to exploit their vulnerabilities. Additionally, we observe
some large bubbles distribute near the red line. This indicates
a burst of transactions in their earlier phases but have since
transitioned into a dormant state. Such an intriguing contrast
between their past vibrancy and current inactivity prompts
us to further investigate these contracts. Therefore, we have
filtered out the transactions of the top 50 contracts in terms of
the number of involved transactions, i.e., the size of bubbles.
Through a detailed and comprehensive transactional analysis,
we found that 3 of them have been exploited already, while 47
of them are at risk. We speculate the reason is that the balance
is small and attackers have not noticed yet or are waiting for
the opportunity to make a large profit.

5.3.3 Financial Related Metrics

We further evaluate the financial impact of these vulnerable
smart contracts. Intuitively, by measuring how many transac-
tions are involved in a contract can reflect its financial impact
to some extent. Fig. 5 illustrates the distribution of the num-
ber of transactions involved in them. We can easily observe
that the distribution follows the Pareto principle [29], i.e.,
there exists a long tail in the distribution. More than 55.46%
cases are involved within 5 transactions, while the case named
AnySwap [8] is involved in around 237,000 transactions. The
results follow the Oliva et al.’s [62], i.e., most contracts in
Ethereum are inactive, a small portion of contracts greatly
contribute to the prosperity of the Ethereum ecosystem.

In addition, we desire to evaluate how many assets are di-
rectly involved in them. For DeFi projects, TVL (Total Value
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RQ 2: Characteristics of Vulnerable Contracts

Fig 6. The relationship between the bytecode length and the time 
consumed on each case. 

The detection time does not grow exponentially with the length of the bytecode.

Locked) is one of the most representative metrics. Thus, for
each case, we retrieve its historical TVL from a third-party
API, DeFiLlama [53], a DeFi data browser known for provid-
ing metrics like TVL and market cap. For each project, we
retrieve their peak TVL as it corresponds to the timestamp
when attackers can obtain the most profit. In total, around
$11.2 billion was considered to be directly locked into these
vulnerable contracts. The top-3 Ethereum projects in terms of
compromised assets include Visor3 [11], TempleDao4 [13],
and AnySwap5 [65]. Interestingly, except for Anyswap, other
two projects immediately stop providing services after being
attacked. This is because hackers exploit a vulnerability in
Anyswap to indirectly steal tokens from users. Conversely,
in the other two projects, the funds within the vulnerable
contracts were directly accessed and stolen, leading to an
immediate cessation of services. Moreover, the time win-
dow between the creation and the corresponding exploitation
suggests the opportunity for vulnerability detection and re-
mediation. While Visor saw exploitation within 3 months,
Anyswap remained uncompromised for 210 days. Such a
variation might result from factors like the implementation
complexity, public visibility, or the inherent vulnerability’s
nature. However, it proves that there is often a time window
to detect and patch vulnerabilities before an attack happens.

RQ-2 Answer

Around 68.4% vulnerable contracts are ERC-20 or ERC-
721 tokens. We further reveal that attackers tend to launch
attacks dozens of days after the deployment for greater
benefits, suggesting there exists a time window for vulner-
ability detection and remediation.

5.4 RQ3: Real-time Detection
We aim to deploy AVVERIFIER as a real-time detector. Thus,
we measured several performance metrics (see §5.4.1). Addi-
tionally, we give a case study to illustrate how a vulnerability
can be detected by AVVERIFIER before an attack (see §5.4.2).

5.4.1 Quantitative Analysis

We measure two real-world performance metrics. First, we
compare the rate of contract creation along block generation
to the performance of AVVERIFIER, which can shed light on
the responsiveness and real-time applicability of AVVERI-
FIER. Second, we illustrate the correlation between bytecode
length and the consumed time taken for analysis. This metric
indicates the scalability of AVVERIFIER with the increasing
complexity and size of contracts.
Rate on Contract Creation vs. Detection. We directed our
attention to the data from Nov. 2022 to Jan. 2023, a period

30xC9f27A50f82571C1C8423A42970613b8dBDA14ef
40xd2869042E12a3506100af1D192b5b04D65137941
50x6b7a87899490EcE95443e979cA9485CBE7E71522

Figure 6: The relationship between the bytecode length and
the time consumed on each case.

of time when contracts are heavily deployed (illustrated in
Fig. 3). According to our statistics, these three months cover
blocks with the height from 15,870,000 to 16,518,000, ac-
counting for 289,238 deployed contracts. In other words,
0.45 contract is deployed on average within each block. As
for BSC, according to a widely known BSC browser, Bsc-
Scan [15], we can calculate that a block is generated every
3s, and there are 2.1 contracts deployed in each BSC block
on average. According to the results in RQ1, each Ethereum
contract takes around 6.42s. Therefore, considering the num-
ber of contract deployed in each block and the speed of block
generation in Ethereum, a single-core processor can be used
to deploy AVVERIFIER as a real-time detector. As for BSC,
each block spends around 6.42s ⇥2.1 = 13.48s, greater than
the time taken by the block generation. However, the method-
ologies adopted by AVVERIFIER can be paralleled easily,
like analyzing multiple suspicious functions simultaneously.
Therefore, a multi-core machine is sufficient.
Scalability. To evaluate the scalability of AVVERIFIER, we
randomly sample 1,000 contracts from the ones deployed
within the recent year. Figure 6 presents the relation between
the bytecode length and the consumed time. Clearly, there
does not exist a linear correlation or even an exponential one
between these two metrics. We can also observe that most
cases can be finished within 20s. Such a high detection effi-
ciency can be attributed to two points. On the one hand, the
detection logic is very efficient. For example, the Detector can
effectively screen suspicious functions, and can stop the anal-
ysis in time when a vulnerability is encountered. On the other
hand, the detection method has few performance bottlenecks.
Unlike static symbolic execution techniques, the Simulator
can quickly and accurately traverse paths that could lead to
vulnerabilities. Therefore, the spent time of AVVERIFIER
on each case is not directly proportional to bytecode length,
illustrating its scalability.

5.4.2 Case Study: A Real-world Early-warning Case

We illustrate a real-world case that is marked as vulnera-
ble when AVVERIFIER is deployed as a real-time detector
on BSC. As there is no source code for the case, Listing 4
illustrates its decompiled version. Moreover, due to the non-
disclosure principle, we make a slight change syntactically
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RQ 2: Characteristics of Vulnerable Contracts

¢ RQ2: How many smart contracts are vulnerable in the wild and what 
are their characteristics? 

Answer: 
¢ Around 68.4% vulnerable contracts are ERC-20 or ERC-721 tokens. 
¢ Attackers tend to launch attacks dozens of days after the deployment 

for greater benefits.
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RQ 3: Real-time Detection

¢ Chain: Ethereum, BSC
¢ Vulnerable Contracts: 9
¢ Time Span: 2023.4.15 – 2023.10.30

No Whitelist VerficationExternal Call Check

Post-call State 
Modification
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RQ 3: Real-time Detection

¢ RQ3: Can AVVERIFIER be deployed as a real-time detection system? 

Answer: 
¢ AVVERIFIER has the ability to monitor in real-time. 
¢ AVVERIFIER monitors a vulnerable contract with $30,000.
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Takeaway Message

¢ New taint analysis method for detecting address verification 
vulnerabilities in Ethereum contracts.

¢ Outperforms existing tools in detecting address verification 
issues.

¢ Real-time detection of address verification vulnerabilities on 
blockchain platforms.

Contact us: 
stl_hust@hust.edu.cn

Github QR Code


