

PhishDecloaker

Detecting CAPTCHA-cloaked Phishing Websites via Hybrid Vision-based Interactive Models

Xiwen Teoh, Yun Lin, Ruofan Liu, Zhiyong Huang, Jin Song Dong

 Phishing websites (*evaders*) and anti-phishing entities (*detectors*) are in an endless cat-and-mouse game

websites

- Phishers use cloaking to deny access and evade detection
 - IP & User-Agent blacklist
 - One-time URLs
 - Browser fingerprinting

Anti-phishing entities

- Recently, new trend: CAPTCHA-cloaked phishing
- This is reported by TrendMicro, Palo Alto Networks, AT&T, and many others

- CAPTCHA-cloaking is problematic because:
 - It provides a false sense of legitimacy
 - Among top-1 million popular websites, 270k+ are using CAPTCHAs for common workflows (i.e., authentication)
 - It has low deployment cost
 - Many free or open-source CAPTCHA services (e.g., reCAPTCHAv2, hCaptcha) are readily available
 - It is hard to bypass
 - Our 7-day empirical study shows that none of our 500 CAPTCHA-cloaked phishing kits are detected by VirusTotal, Google Safe Browsing, Microsoft SmartScreen

- PhishDecloaker...
 - Is a hybrid deep-vision system to automatically detect, recognize, and solve diverse CAPTCHAs on phishing pages
 - Once a phishing page is "decloaked", pass it to the phishing detectors

- PhishDecloaker adopts a 3-stage approach:
 - **Detection:** object detection, given a webpage screenshot, locate regions that are potentially CAPTCHAs
 - Recognition: classification, given a cropped region, identify the type of CAPTCHA present
 - **Solving:** browser automation, interact with the live page and complete the CAPTCHA challenge

• PhishDecloaker adopts a 3-stage approach:

Detection

- Modified Faster-RCNN (a.k.a Object Localization Network [1])
- Train with only localization & bbox regression loss (class agnostic)
- Reasons:
 - Reduce overfitting to labeled objects
 - Learn stronger object cues
 - Achieve cross-category and cross-dataset generalization

[1] Kim et al. *Learning open-world object proposals without learning to classify*. IEEE Robotics and Automation Letters, 7(2):5453–5460, 2022.

Recognition

- Design Considerations
 - Multi-modal representation learning
 - Challenge: CAPTCHA contains text and visual information Retype the characters
 - Solution: dual-branch architecture
 - Intra-type diversity
 - Challenge: handle same CAPTCHA type, but different challenge variants
 - Solution: metric learning with Sub-center ArcFace loss
 - Inter-type diversity
 - Challenge: handle new, unseen CAPTCHA types
 - Solution: Siamese model

Recognition

- Deep Siamese model
- Dual branch architecture: textual and visual features
- Encode input images as *n*-dimension embeddings (n = 512)

Testing CAPTCHA

Recognition

 Classify CAPTCHA by comparing its embedding with a list of reference embeddings

Recognition

- Train the model via metric learning
- Pull positive pairs closer, negative pairs further in embedded space
- Objective function: Sub-center ArcFace Loss

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{e^{s \cdot (\cos(\theta_{y_i} + m) - 1)}}{e^{s \cdot (\cos(\theta_{y_i} + m) - 1)} + \sum_{j=1, j \neq y_i}^{C} e^{s \cdot \cos(\theta_j)}} \right)$$
(a) Softmax
(b) ArcFace

ArcFace: learned embeddings are distributed on a hypersphere with radius of $s \rightarrow$ clear decision boundary (inter-type diversity) Sub-center: embeddings belonging to the same class can have multiple clusters (intra-type diversity)

Solving

- 4 CAPTCHA types:
 - reCAPTCHAv2
 - hCaptcha
 - Slider-based
 - Rotation-based

Please click on the object that appears only once.

Solving

reCAPTCHAv2 & hCaptcha solver: object detection

Please click on the duck's head

- Solving
 - Slider-based CAPTCHA solver: template matching

- Solving
 - Rotation-based CAPTCHA solver: regression

 Can PhishDecloaker help discover more 0-day phishing websites in the wild? We prepared 6 study groups:

Group	Detector	JavaScript (JS)	Anti-Cloaking	Description	
G1		No	No	Control group	
G2	_	Yes	No	JS rendering	
G3		Yes	Anti-interaction-cloaking	Automatically closes popups, randomly moves and clicks mouse	
G4	PhishIntention	Yes	Anti-fingerprint-cloaking	Randomizes user agent and cookies, spoofs referrer, uses stealth headless browser	
G5		Yes	Anti-behavior-cloaking	Follows redirects, waits and retries page loading up to 3 times	
G6	-	Yes	Anti-CAPTCHA-cloaking	Uses PhishDecloaker to detect and solve CAPTCHAs	

- Experiment setup
 - Crawl new domains from Certstream (domains w/ new SSL certs)
 - Deploy the 6 study groups on the crawled domains
- Validation and monitoring
 - If a domain is reported as phishing by any group, we manually inspect the domain and track some metrics
 - **0-day:** a phishing website is 0-day if it is not reported by VirusTotal at the time of inspection
 - Time-to-takedown: time taken (hours) for site to go offline
 - **Time-to-blacklist:** time taken (hours) to be blacklisted by any of VirusTotal, Safe Browsing, or SmartScreen

- Findings #1: PhishDecloaker's (G6) performance
 - Discovers 7.6% more phishing websites not reported by any other study group
 - Captures the most 0-day phishing websites

Group	Setup	Unique Ratio	# 0-Days	# Phishing
G1	PI	0.0%	101 (-0.0%)	361 (-0.0%)
G2	PI + JS	0.0%	176 (†74.3%)	582 (†61.2%)
G3	PI + JS + AI	14.1%	197 (†95.0%)	710 (†96.7%)
G 4	PI + JS + AF	0.0%	165 (†63.4%)	543 (†50.4%)
G5	PI + JS + AB	7.4%	198 (†96.0%)	692 (†91.7%)
G 6	PI + JS + AC	10.2%	203 (†101.0%)	648 (†79.5%)

- Findings #2: targeted sectors
 - Sectors targeted by CAPTCHA-cloaked phishing differs from ordinary phishing websites

Ordinary	%	CAPTCHA-Cloaked	%
Telecommunications	23.8	Cryptocurrency	43.9
Social Networking	22.8	Social Networking	19.3
Gambling	12.5	Logistics / Courier	15.8
Online Services / Software	12.3	Government Services	8.8
Financial / Insurance	10.1	Financial / Insurance	5.3

- Findings #3: CAPTCHA types
 - Phishers tend to use free and convenient CAPTCHA services
 - Predominantly reCAPTCHAv2 (22.7%) and hCaptcha (77.3%)
 - Distribution differs from CAPTCHAs used by benign websites

- Findings #4: CAPTCHA service API keys
 - These keys are extracted from CAPTCHA iframe in DOM
 - The distribution of API key usage is "roughly Pareto" fewer than 20% of the API keys account for more than 55% of CAPTCHAcloaking
 - For example, one hCaptcha API key was found to be reused across 19 different phishing websites.
 - Suggestion: as phishers reuse keys, they can be used as an Indicator of Compromise (IoC)

- Findings #5: Phishing lifespan and time-to-blacklist
 - Surprisingly, CAPTCHA-cloaked phishing have a shorter lifespan compared to ordinary phishing (9.7 vs 13.2 hours)
 - However, it takes blacklist-based detectors 45.5% longer time (11 hours) to register CAPTCHA-cloaked phishing as opposed to ordinary phishing.

Figure 8: Cumulative distribution of life span for CAPTCHAcloaked and ordinary phishing sites.

Figure 9: Cumulative distribution of time taken to be blacklisted by SmartScreen or GSB for CAPTCHA-cloaked and ordinary phishing sites.

- Findings #6: Overhead
 - The median time of PhishDecloaker for detection, recognition and solving are 0.4s, 0.3s, 15.3s respectively
 - Long solving time can be mitigated by priority queues and asynchronous processing

Thank You!

- Questions:
 - <u>e1374478@u.nus.edu</u> (Xiwen Teoh)
 - <u>lin_yun@sjtu.edu.cn</u> (Prof. Yun Lin)
- Resources:
 - <u>https://github.com/code-philia/PhishDecloaker</u> (Codebase)
 - <u>https://zenodo.org/records/11228974</u> (Datasets)
 - <u>https://huggingface.co/code-philia/PhishDecloaker</u> (Models)