Detecting and Mitigating Sampling Bias in Cybersecurity with Unlabeled Data

Saravanan Thirumuruganathan, Fatih Deniz*, Issa Khalil*, Ting Yu*, Mohamed Nabeel⁺, Mourad Ouzzani^{*}

> *Qatar Computing Research Institute, HBKU +Palo Alto Networks

Qatar Computing Research Institute 14/08/2024

Outline

- Sampling Bias in Cybersecurity
- Problem Definition
- Approach Overview
- Detection Algorithms
- Mitigation Strategies
- Results

Sampling Bias in Cybersecurity

Sampling Bias: The collected data does not sufficiently represent the true data distribution of the underlying problem.

Most common causes:

- Convenience sampling
- Labelling heuristics

* Arp, Daniel, et al. "Dos and don'ts of machine learning in computer security." *31st USENIX Security Symposium (USENIX Security 22)*. 2022.

Sampling Bias in Cybersecurity

* Robert M Groves and Lars Lyberg. Total survey error: Past, present, and future. *Public opinion quarterly*, 74(5):849–879, 2010.

Sampling Bias in Cybersecurity

Concept Drift: Causes performance degradation of ML classifiers as the deployment data diverges from the training data.

Distribution Shift: A broader term that encompasses both concept drift and other shifts in data distribution, such as covariate shift or label shift.

Sampling Bias: Occurs when there is a discrepancy between the training data and deployment data distributions right from the start.

Key Insight: Unlike concept/distribution drift, sampling bias exists before the classifier is deployed, and addressing it requires different strategies.

Problem Definition

Given:

- Labeled training dataset D_T $D_T = \{(x_1, y_1), ..., (x_n, y_n)\}\)$
- **A classifier C_T** trained using D_T
- Unlabeled deployment data D_U $D_U = \{x_1, x_2, ..., x_m\}$

Objective:

- 1. Detect if C_T is biased or can be used on D_U .
- 2. If there is sampling bias, train a classifier with a higher performance on D_{U} than the C_T .

Overview Detection

Detection Algorithms:

- Domain discrimination
- Distribution of kth nearest neighbor distance

Mitigation Strategies:

- Contrastive Learning for Bias Mitigation (CONL-BM)
- **Bias Mitigation Using Cycle Consistency (CYC-BM)** \bullet

Randomly split D_T into equal sized partitions D_T^1 and D_T^2 Randomly split D_U into equal sized partitions $D_U^{\bar{1}}$ and $D_U^{\bar{2}}$ Train classifier C_D on $D_T^1 \cup D_U^1$ acc = Accuracy of C_D on $D_T^2 \cup D_U^2$

k-NN Based Bias Detection

QATAR COMPUTING RESEARCH INSTITUTE * Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural information processing systems*, 33:18661–18673, 2020.

Intuition: If two data distributions

Overview Mitigation

Detection Algorithms:

- Domain discrimination
- Distribution of kth nearest neighbor distance

Mitigation Strategies:

- Contrastive Learning for Bias Mitigation (CONL-BM)
- Bias Mitigation Using Cycle Consistency (CYC-BM)

Key insight: Design a better latent space to obtain better pseudo labels.

Contrastive Learning for Bias Mitigation

Challenge: To identify positive/negative pairs without having the label information

Objective Function: Soft Nearest Neighbor Loss from D_U + CE from D_T

- $\forall x_i \in D_U \Rightarrow y_i$ is the (pseudo) label for x_i
- sim(...) measures the similarity between two data items

$$
\mathcal{L}_{snn} = -\frac{1}{|B|} \sum_{i=1}^{|B|} \log \frac{\sum_{i \neq j, \hat{y}_i = \hat{y}_j} \exp(-sim(x_i, x_j)/\tau)}{\sum_{i \neq k} \exp(-sim(x_i, x_k)/\tau)}
$$

Bias Mitigation Using Cycle Consistency

Challenge: Estimating pseudo-label accuracy when there is no label for D_U

Solution: Use interrelated classifiers.

- Step 1: Train C_T on D_T and obtain pseudo labels for D_U
- Step 2: Train C_{U} on D_{U} and obtain predictions for D_{T}
- Result: Indirectly evaluate pseudo-labeling strategy accuracy

Experimental Setup

Conducted experiments over widely used benchmark datasets from:

- Android malware
- Microsoft PE
- Intrusion Detection Systems
- Domain (URL)

Experimented with different settings:

- Sampling strategies (adversarial, benign, mixed, etc.)
- Classifiers (SVM, RF, LR, DL, etc.)

Key finding: We can successfully detect sampling bias and reclaim 90% of lost deployment f-score.

Results – Detection

We accurately detect sampling bias.

Results – Detection

Our detection approach is classifier agnostic.

Results – Mitigation

We mitigate over 90% of the adverse effects of sampling bias.

Results – Mitigation

Our approach works for different sampling strategies.

Results – Mitigation

 $\overline{\mathbf{RF}}$ $\overline{\mathbf{DL}}$ Trans. **SVM LogReg** 11.3 8.7 16.9 16.2 $max \Delta$ 9.2 ConL-BM 10.2 11.9 8.8 6.4 12.1 $CyC-BM$ 9.1 10.3 6.8 14.2 13.8 **DANN** 6.6 6.8 4.2 9.8 9.8 6.4 **SHOT** 5.1 5.6 3.9 6.6 **VAT** 3.8 4.3 4.1 4.4 4.7 FixMatch 7.7 6.3 5.9 7.9 6.1

Our mitigation approach is classifier agnostic.

Summary

- Sampling bias is a very prevalent issue in cybersecurity.
- We addressed this using two steps:
	- Detection
	- Mitigation
- We can successfully detect sampling bias and reclaim 90% of lost deployment f-score.

Thanks

