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Sampling Bias in Cybersecurity

Sampling Bias: The collected data does not sufficiently represent the true data
distribution of the underlying problem.
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Most common causes:
* Convenience sampling
* Labelling heuristics

* Arp, Daniel, et al. "Dos and don'ts of machine learning in computer security." 37st USENIX Security Symposium (USENIX Security 22). 2022.
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Sampling Bias in Cybersecurity
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* Robert M Groves and Lars Lyberg. Total survey error: Past, present, and future. Public opinion quarterly, 74(5):849-879, 2010.
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Sampling Bias in Cybersecurity

Concept Drift: Causes performance degradation of ML classifiers as the deployment data diverges
from the training data.

Distribution Shift: A broader term that encompasses both concept drift and other shifts in data
distribution, such as covariate shift or label shift.

Sampling Bias: Occurs when there is a discrepancy between the training data and deployment data
distributions right from the start.

Key Insight: Unlike concept/distribution drift, sampling bias exists before the classifier is deployed,
and addressing it requires different strategies.

QATAR COMPUTING RESEARCH INSTITUTE



Problem Definition

Given:
* Labeled training dataset D;
Dr = {(Xy,Y1),-- (X0 Yn)} )
* A classifier C;trained using Dy
* Unlabeled deployment data D

Dy = {X1,X2, .., X0}

Training
Dataset
(D7)

Production
Data (D)

Objective:
1. Detect if C;is biased or can be used on Dy,.
2. If there is sampling bias, train a classifier with a higher performance on D,
than the C;.
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Overview Detection

Detection Algorithms:
* Domain discrimination
» Distribution of kth nearest neighbor distance
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Domain Discrimination

Intuition: If two distributions
cannot be differentiated,

: b | sampling bias is likely minimal.
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Randomly split Dy into equal sized partitions D}, and D?,
Train classifier Cp on D UD},
acc = Accuracy of Cp on D% U D%,



k‘N N Based BiaS DEtECtion Intuition: If two data distributions

*SupCon Training are similar, then the distribution
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* Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. 0
Advances in neural information processing systems, 33:18661-18673, 2020. XM
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Overview Mitigation

Mitigation Strategies:
e Contrastive Learning for Bias Mitigation (CONL-BM)
e Bias Mitigation Using Cycle Consistency (CYC-BM)

Key insight: Design a better latent

space to obtain better pseudo labels. e

)
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Contrastive Learning for Bias Mitigation

Challenge: To identify positive/negative pairs without having the label information

Objective Function: Soft Nearest Neighbor Loss from D+ CE from D;
* VX €Dy=y;is the (pseudo) label for x;
* sim(-,-) measures the similarity between two data items

1 1Bl gz#j,yi:ij exp(—sim(x;,x;)/7)
= Yizk exp(—sim(x;, xi)/T)
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Bias Mitigation Using Cycle Consistency

Challenge: Estimating pseudo-label accuracy when there is no label for D
Solution: Use interrelated classifiers.
e Step 1: Train C; on D; and obtain pseudo labels for D

e Step 2: Train C, on Dy and obtain predictions for D;

e Result: Indirectly evaluate pseudo-labeling strategy accuracy
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Experimental Setup

Conducted experiments over widely used benchmark datasets from:
* Android malware

 Microsoft PE

* Intrusion Detection Systems
* Domain (URL)

Experimented with different settings:
* Sampling strategies (adversarial, benign, mixed, etc.)
* Classifiers (SVM, RF, LR, DL, etc.)

Key finding: We can successfully detect sampling bias

and reclaim 90% of lost deployment f-score. e
X
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Results — Detection

We accurately detect sampling bias.

Emb- Emb-
TN-AZ | AZ-TN UCSB | BODMAS

DomDisc | 0.97 0.98 0.99 0.97
kNN-Dist | 0.99 0.98 0.99 0.98
PM 0.89 0.91 0.88 0.9
CM 0.91 0.86 0.9 0.86
f-Div 0.78 0.81 0.77 0.72
ViM 0.94 0.96 0.96 0.95
MaxLogit | 0.92 0.93 0.96 0.91
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Results — Detection

Our detection approach is classifier agnostic.

SVM | RF | LogReg | DL | Trans

DomDisc | 0.96 | 0.97 0.97 0.98 | 0.98
kNN-Dist | 0.95 | 0.95 0.96 0.96 | 0.96
PM 0.86 | 0.86 0.84 0.83 | 0.88
CM 0.89 | 0.88 0.86 0.83 | 0.87
f-Div 0.77 | 0.79 0.8 0.77 | 0.78
ViM 0.92 | 0.93 0.92 0.94 | 0.95
MaxLogit | 0.92 | 091 0.91 0.92 | 0.93
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Results — Mitigation

We mitigate over 90% of the adverse effects of sampling bias.

Emb- Emb-

IN-AZ | AZ-IN | B | BODMAS

maxA 16.9 12.9 26.1 27.3
ConL-BM 12.3 10.2 19.1 22.3
CyC-BM 14.3 10.6 21.3 22.7
DANN 0.8 8.1 14.7 16.1
SHOT 6.5 6.2 10.1 11.3
VAT 4.4 4.1 8.8 7.9
FixMatch 7.5 6.6 11.3 13.4
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Results — Mitigation

Our approach works for different sampling strategies.

Adyv. | Benign | Mxd | Mxd-2 | Mxd-3
maxA 24.9 7.9 19.7 11.4 22.7

ConL-BM | 18.2 6.7 16.5 12.6 11.2
CyC-BM | 19.1 7.1 17.1 9.9 12.4

DANN 11.2 5.4 13.2 8.4 7.2
SHOT 7.6 3.3 7.8 54 5.8
VAT 5.1 4.1 7.5 4.8 6.9
FixMatch | 8.3 5.1 6.2 5.6 4.4
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Results — Mitigation

Our mitigation approach is classifier agnostic.

SVM | RF | LogReg | DL | Trans.

max A 92 | 113 8.7 169 | 16.2

ConL-BM | 8.8 | 10.2 6.4 12.1 11.9

CyC-BM 9.1 10.3 6.8 142 | 13.8
DANN 6.6 6.8 4.2 9.8 9.8
SHOT 5.1 5.6 3.9 6.6 6.4
VAT 4.4 4.7 3.8 4.3 4.1
FixMatch | 6.1 6.3 5.9 7.9 7.7
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Summary

* Sampling bias is a very prevalent issue in cybersecurity.
* We addressed this using two steps:
* Detection

* Mitigation

* We can successfully detect sampling bias and reclaim 90% of lost deployment f-score.
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