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Outline

1. Primer on Private ML and an Open Problem

1. Explaining Gaps with Data-Dependent Analysis
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Primer on Privacy

3



The Adversary

Model
M

Membership 
Inference

x*  D

x*  D

● Implies other privacy attacks

Main Q: How to protect against this adversary?
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Differential Privacy
Renyi DP: For ALL adjacent training datasets D,D’

Bounds the adversary for all datapoints

Model Training 
Algorithm

5



How to Obtain DP: DP- SGD

Clip Gradients Per 
Example

Add Noise
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Private ML in the Wild

1) Can match the worst case guarantee of DP-SGD: 
- “Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning” Nasr et al. IEEE 

S&P

1) But in most settings attacks are far away from the bound
- For most Models, D,D’ pairs, we empirically don’t reach the bound on privacy 

leakage
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Towards Explaining This

1) Bounding Membership Inference Accuracy:
- “Optimal Membership Inference Bounds for Adaptive Composition of Sampled Gaussian Mechanisms” Mahloujifar et al. 

Preprint
- “From Differential Privacy to Bounds on Membership Inference: Less can be More” Thudi et al. TMLR

1) Bounding Reconstruction Attacks:
- “Bounding Training Data Reconstruction in Private (Deep) Learning” Guo et al. ICML

1) DP-like Guarantee with Additional Assumptions:
- “Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent”  Yu et al. TMLR

Either not Individual, Attack specific, or Weaker than the DP inequality
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The Problem: Per-Instance DP

Show that, for many specific adjacent pair D,D’= D x* 

Smaller than the worst case for DP-SGD
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Implications

Memorization:

- Performance change between training with or without a specific point
- Leaks privacy hence bounded by  Per-Instance DP

Unlearning: 

- Change in models between training with or without a specific point
- Leaks privacy hence bounded by Per-Instance DP
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How does a dataset give more privacy to a point?
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DP-SGD Analysis

Bounding the Renyi Divergence for DP-SGD follows in two steps:

1) Bounds on the per-step divergence
2) Bounds on the composition of per-step divergences

So how can a dataset D make a point x* more private?
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Datasets can mask per-step updates

Classical Analysis: Clipping uniformly bounds the sensitivity to any point 

Observation: What happens if many other datapoints in the dataset give a similar 
update? 

Sensitivity Distributions: Can derive per-step analysis with the distribution of 
updates coming from the dataset
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A Sensitivity Distribution

𝛼 mini batches from 
D, 1 from D’

Difference in || || minus || || of 
difference
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The Guarantee

“Expectation” of sensitivity
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Per-Step: Most Points are Better Than Worst Case 

Results for CIFAR10

Data-Independent 
Bound

Improvement Across 
Training Steps
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Datasets can lead to more private models

The per-step guarantee depends on a given model

Classical Analysis: models reached during training are always worst-case for the datapoint

Observation: But what if most models reached during training have better guarantees?

Composition with “Expectations”: We can bound composition by only considering “expected” 
guarantees at each step.
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Expected guarantee at (n-i) step

Initial steps are weighted higher

Free Variable p > 1

N steps with D and D’
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Better privacy for many datapoints than worst-case

Results for MNIST

Average Trend for 500 
points

10th Percentile
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Log Scale



Correct Points Benefit More

Results for CIFAR10
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Takeaways

1. Many datapoints are harder to attack than the worst case
- Datasets can mask updates from datapoint 
- Datasets can lead to favourable models for the datapoint 

1. Analogously: many datapoints are easier to unlearn 

1. Open Problem: How tight is this per-instance analysis?

1. Open Problem: How to check data-dependent privacy efficiently?
- Current approach is expensive, useful for existence
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Warning: On Data Dependency

Data dependent guarantees have known security issues

- E.g., releasing data-dependent guarantee leaks privacy

But useful quantity in the study of Trustworthy ML

Future Work: to better understand the utility of per-instance DP in Trustworthy ML
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