Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD

Anvith Thudi, Hengrui Jia, Casey Meehan, Ilia Shumailov, Nicolas Papernot

1

Outline

- 1. Primer on Private ML and an Open Problem
- **Outline**
1. Primer on Private ML and an Open Problem
1. Explaining Gaps with Data-Dependent Analysis

Primer on Privacy

Main Q: How to protect against this adversary?

Differential Privacy

Renyi DP: For **ALL** adjacent training datasets D,D'

Bounds the adversary for all datapoints

"Deep Learning with Differential Privacy" [ACGMMTZ] CCS 2016

Private ML in the Wild

-
- 1) Can match the worst case guarantee of DP-SGD:
- "Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning" Nasr et al. IEEE
- "Adversary Instantiation: Lower Bounds for Differentially Private Ma S&P
-
- **Private ML in the Wild

1)** Can match the worst case guarantee of DP-SGD:

 *"Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning" Nasr et al. IEE
 S&P

 <i>For most settings attacks are fa* - For most Models, D,D' pairs, we empirically don't reach the bound on privacy leakage

Towards Explaining This

1) Bounding Membership Inference Accuracy:

- "Optimal Membership Inference Bounds for Adaptive Composition of Sampled Gaussian Mechanisms" Mahloujifar et al. **Preprint**
- "From Differential Privacy to Bounds on Membership Inference: Less can be More" Thudi et al. TMLR

1) Bounding Reconstruction Attacks:

- "Bounding Training Data Reconstruction in Private (Deep) Learning" Guo et al. ICML

1) DP-like Guarantee with Additional Assumptions:

"Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent" Yu et al. TMLR

Either not Individual, Attack specific, or Weaker than the DP inequality

The Problem: Per-Instance DP

Show that, for many specific adjacent pair $D, D' = D \cup x^*$

 $D_{\alpha}(f(D)||f(D')) \ll \epsilon$

Smaller than the worst case for DP-SGD

Implications

Memorization:

- **Interface of Separation Standard Separation:**
- Performance change between training with or without a specific point
- Leaks privacy hence bounded by Per-Instance DP **Individual Standard Sta Interference is a set of the model set of the model set of the model of the change in models between training with or without a specific point

Intearning:

Change in models between training with or without a specific poi Independent Condensity Condensity**
- Performance change between training with or without a specific point
- Leaks privacy hence bounded by Per-Instance DP
- Change in models between training with or without a specific poi
-

Unlearning:

-
-

How does a dataset give more privacy to a point?

DP-SGD Analysis

Bounding the Renyi Divergence for DP-SGD follows in two steps: 1) Bounding the Renyi Divergence for DP-SGD follows in two
1) Bounds on the per-step divergence
2) Bounds on the composition of per-step divergences 2) DP-SGD Analysis
2019 - SGD Analysis
2019 - Sounds on the per-step divergence
2019 - Bounds on the composition of per-step divergences
2019 - Bounds on the composition of per-step divergences

-
-

So how can a dataset D make a point x* more private?

Datasets can mask per-step updates

Classical Analysis: Clipping uniformly bounds the sensitivity to any point

Observation: What happens if many other datapoints in the dataset give a similar update?

Sensitivity Distributions: Can derive per-step analysis with the distribution of updates coming from the dataset

A Sensitivity Distribution

$$
\Delta_{U,\alpha}(X_B \tilde{\alpha}, X'_B) := \sum_i ||U(X_B^i)||_2^2 - (\alpha - 1)||U(X'_B)||_2^2 - ||\Delta_{\alpha}(X_B \tilde{\alpha}, X'_B)||_2^2
$$

 α mini batches from D, 1 from D'

where
$$
\Delta_{\alpha}(X_B^{\alpha}, X_B') = (\sum_i U(X_B^i)) - (\alpha - 1)U(X_B').
$$

The Guarantee

Theorem 3.6. Let $\alpha > 1$ be an integer. Given two arbitrary datasets X, X' , the sampled Gaussian mechanism M with noise σ satisfies:

"Expectation" of sensitivity

$$
D_{\alpha}(M(X')||M(X)) \leq \frac{1}{(\alpha-1)} \mathbb{E}_{X_B}(\ln(\mathbb{E}_{X'_B} \alpha(e^{\frac{-1}{2\sigma^2}\Delta_{U,\alpha}(X'^{\alpha}_B, X_B)})))
$$

Per-Step: Most Points are Better Than Worst Case

Datasets can lead to more private models

The per-step guarantee depends on a given model

Classical Analysis: models reached during training are always worst-case for the datapoint Observation: But what if most models reached during training have better guarantees?

Composition with "Expectations": We can bound composition by only considering "expected" guarantees at each step.

Worst Case View:

Expected View:

where $g_p(\alpha) = \frac{p}{p-1}\alpha - \frac{1}{p}$ and g_p^i is g_p composed i times, where we defined $g_p^0(\alpha) = \alpha$

Initial steps are weighted higher

Better privacy for many datapoints than worst-case

Correct Points Benefit More

Takeaways

- Transfered Market Charlotter and Market Charlotter Allian States (Sales Charlotter Datasets can mask updates from datapoint
- Datasets can mask updates from datapoint
- Datasets can lead to favourable models for the datapo Transactor Calculary
 Accord Calculary Standard Calculary Calculary Calculary Calculars

Datasets can lead to favourable models for the datapoint -
- Many datapoints are harder to attack than the worst case
- Datasets can mask updates from datapoint
- Datasets can lead to favourable models for the datapoint
1. Analogously: many datapoints are easier to unlearn Triangle 2013

1. Many datapoints are harder to attack than the worst case

- Datasets can mask updates from datapoint

- Datasets can lead to favourable models for the datapoint

1. Analogously: many datapoints are easier
-
-
-
- Train Mary datapoints are harder to attack than the worst case

1. Many datapoints are harder to attack than the worst case

2. Datasets can lead to favourable models for the datapoint

1. Analogously: many datapoints are
- 1. Many datapoints are harder to attack than the worst case

Datasets can mask updates from datapoint

Datasets can lead to favourable models for the datapoint

1. Analogously: many datapoints are easier to unlearn

1. Ope - Many datapoints are harder to attack than the worst case
- Datasets can mask updates from datapoint
- Datasets can lead to favourable models for the datapoint
- Analogously: many datapoints are easier to unlearn
- Analog
-

Warning: On Data Dependency

Data dependent guarantees have known security issues

Varning: On Data Dependency
Data dependent guarantees have known security issues
- E.g., releasing data-dependent guarantee leaks privacy

But useful quantity in the study of Trustworthy ML

Future Work: to better understand the utility of per-instance DP in Trustworthy ML

Thank You!

Contact: anvith.thudi@mail.utoronto.ca, nickhengrui.jia@mail.utoronto.ca

Paper Code

