33rd USENIX Security Symposium • August 16, 2024 • Philadelphia, PA, USA

You Cannot Escape Me: Detecting Evasions of SIEM Rules in Enterprise Networks

Rafael Uetz¹

Marco Herzog¹ Louis Hackländer-Jansen¹ Simon Schwarz² Martin Henze^{1,3}

Threat Detection in Enterprise Networks

Adversaries frequently attack and intrude enterprise networks

- \rightarrow Data theft, sabotage, extortion
- \rightarrow Timely detection of malicious activity vital to limit damage
- \rightarrow CSOCs perform centralized security monitoring using SIEM systems

Expert-written rules are (still) the primary means for threat detection

- Also called Misuse Detection
- Outperforms anomaly detection (more true and less false alerts)
- Alerts are easy to understand and can be tuned to the environment

Many organizations rely on community-driven, open-source rules

- Go nicely with open-source security monitoring stacks (OpenSearch etc.)
- Several projects exist; most notable: Sigma (https://github.com/SigmaHQ/sigma)
- Sigma has ~3000 rules, ~500 contributors, converters for various SIEM products

Can Adversaries Deliberately Evade Rules?

Example: Evading a Sigma rule for process creation events

- wmic.exe /node:mailserver ... SetAllowTSConnections 1
- wmic.exe -node:mailserver ... SetAllowTSConnections 1 X

We analyzed 292 Sigma process creation rules w.r.t. potential evasions

- Evasion = Command does the same, but rule does not trigger
- We discovered five evasion types:

Insertion	* /create *	schtasks.exe /create	schtasks.exe /"create"
Substitution	0	curl -O http://	curlremote-name http://
Omission	*cscript.exe *.vbs	cscript.exe evil.vbs	cscript evil.vbs
Reordering	* -ma ls*	procdump.exe -ma ls	procdump.exe ls -ma
Recoding	*address=127.0.0.1*	address=127.0.0.1,	address=2130706433,

Result: 38% fully, 7% partially evaded → **major detection blind spots!**

How Can We Detect Such Evasions?

Basic idea: Detect events that are *similar* to those triggering rules

- Approach: Supervised learning from rules versus benign events!
- Also allows to estimate which detection rules were evaded (Rule Attribution)
- We call this idea "Adaptive Misuse Detection" and its implementation "Adaptive Misuse Detection System (AMIDES)"

Evaluation

We evaluated AMIDES in a large enterprise network

- More than 50,000 users
- Four weeks of Windows process creation events (~155 million)
- 266 unique executable filenames

Research questions and answers

- RQ1: How well does AMIDES detect rule evasions?
 - → AMIDES detects 70% of our evasions at zero false alerts
 - → Keeps up with learning from malicious events instead of rules
- RQ2: How accurate is the rule attribution?
 - \rightarrow The evaded rule is within the top 10 for 95% of evasions
- RQ3: Is AMIDES suited for real-world operation?
 - → Yes. 156k EPS, 42 minutes training, thus by far fast enough
 - → Evasions in benign training data cause graceful degradation
 - → Other rule & event types work as well (web, registry, PowerShell)

- Many organizations rely on misuse detection rules such as Sigma to discover intrusions
- We showed that almost half of the ~300 analyzed rules can be evaded easily
- We introduced Adaptive Misuse Detection and AMIDES to detect such evasions
- AMIDES is fit for purpose and freely available

fkie-cad/amides 🔞 rafael.uetz@fkie.fraunhofer.de 🗙 ru37z

