

dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis

Haichen Wang¹, Shuchao Pang^{1*}, Zhigang Lu^{2*}, Yihang Rao¹, Yongbin Zhou¹ & Minhui Xue³

¹Nanjing University of Science and Technology, China ²James Cook University, Australia ³CSIRO's Data61, Australia August 2024

- Background & Preliminaries
- Existing Work
- Our Method
- Experimental Evaluation
- Conclusion

- Background & Preliminaries
- Existing Works
- Our Method
- Experimental Evaluation
- Conclusion

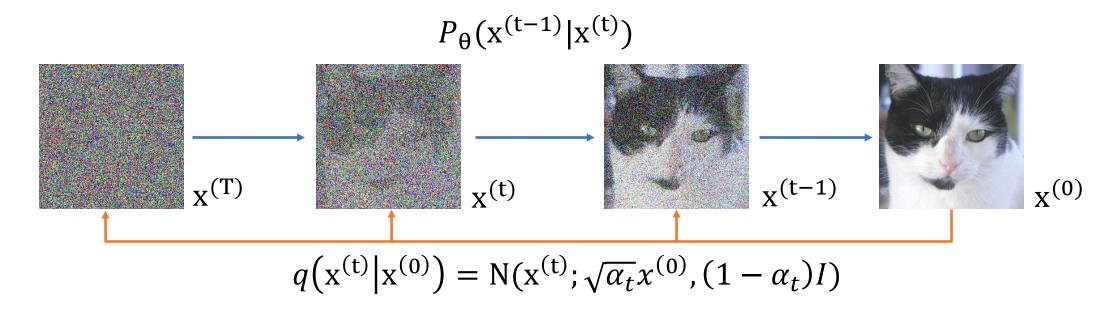
Background

- Large-scale data is crucial for DNN performance.
- Synthetic images produced by generative models can still lead to privacy leakage in sensitive domains.

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

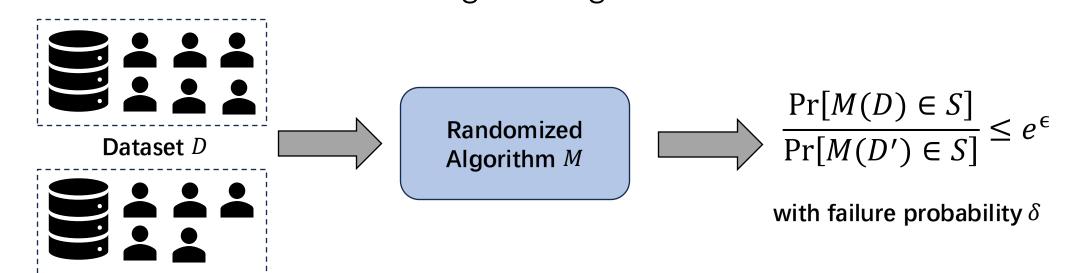


Prompt: Ann Graham Lotz

Fig: Left is an image from Stable Diffusion's training set. Right is a Stable Diffusion generation when prompted with "Ann Graham Lotz". [1]

Diffusion Models

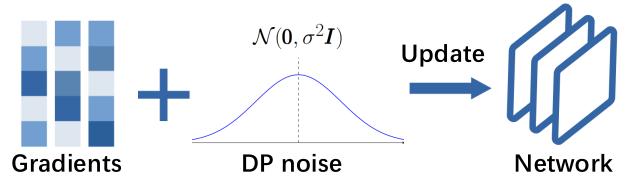
- Forward process
- Reverse process



 α_t : noise scale

Differential Privacy

Dataset D'


• A randomized algorithm M is (ϵ, δ) -DP if and only if $\Pr[M(D) \in S] \le e^{\epsilon} \Pr[M(D') \in S] + \delta$ where D and D' are two neighboring datasets.

- Background & Preliminaries
- Existing Works
- Our Method
- Experimental Evaluation
- Conclusion

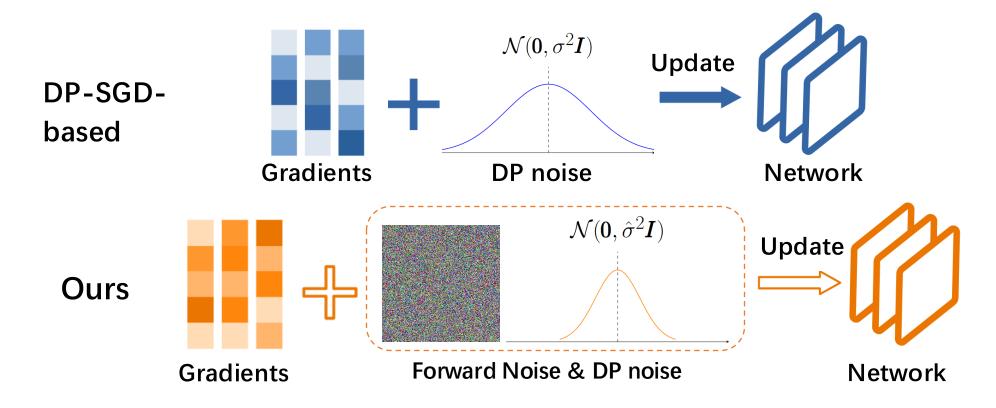
Existing Approaches

- Based on GANs [DP-GAN'18] [GS-WGAN'20] [G-PATE'21]
- Based on Feature Matching [DP-MERF'21] [DP-MEPF'23]
- Based on **Diffusion Models** [DPDM'23] [DP-Diffusion'23]

DM-based methods overlook inherent "privacy features".

- Background & Preliminaries
- Existing Works
- dp-promise
- Experimental Evaluation
- Conclusion

Threat Model

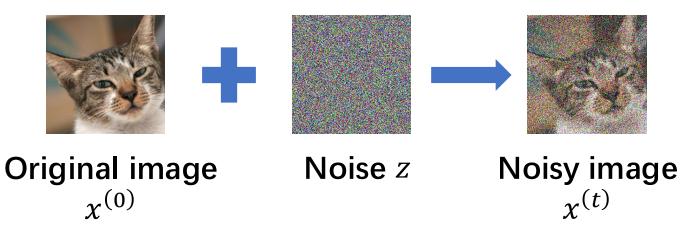

- White-box adversaries against DMs
 - Given access to the images generated by DMs and the model parameters of the trained DMs.
 - Infer the existence of a particular image or reconstruct a set of images belonging to the DMs training data,

Definition 4 (White-box membership inference attacks). Let \mathcal{A} be a white-box adversary, \mathcal{D} be data distribution, A be training algorithm, and \mathcal{G} be a diffusion model with a neural network \mathbf{z}_{θ} . The white-box membership inference attack is

- 0. A has full access to G and z_{θ} .
- 1. Select a private dataset $D_{priv} \in \mathcal{D}$.
- 2. Train \mathcal{G} on D_{priv} with algorithm A as $\mathcal{G}_{A,D_{priv}} = A(\mathcal{G},D_{priv})$.
- 3. Flip a coin to decide whether b = 0 or b = 1.
- 4. Sample $\mathbf{x} \in D_{priv}$ if b = 0, $\mathbf{x} \in \mathcal{D}$ if b = 1.
- 5. Attack is successful if $\mathcal{A}(\mathbf{x}, \mathcal{G}_{A,D_{priv}}, \mathcal{D}) = b$, and fails otherwise.

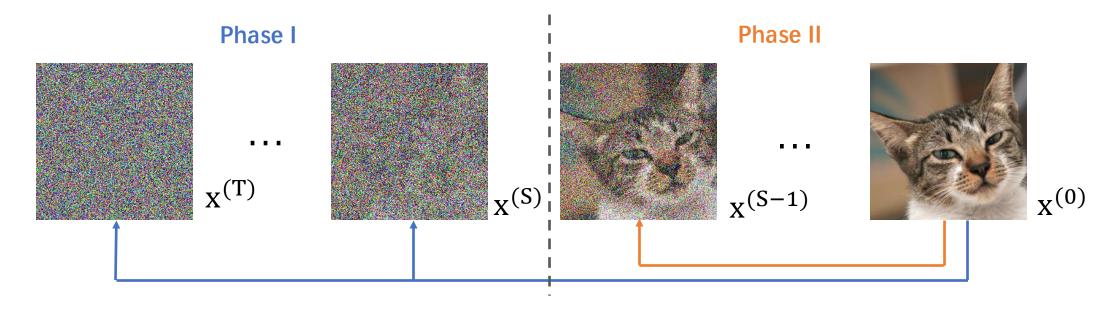
Overview

How to leverage forward process noise? Existing vs Ours



dp-promise

Recall forward process


$$x^{(t)} = \sqrt{\alpha_t} x^{(0)} + \sqrt{1 - \alpha_t} z, z \sim N(0, I)$$

• Forward process is differentially private

dp-promise

- Phase I: Non-private Training
- Phase II: Private Training

Privacy Analysis

• dp-promise asymptotically satisfies $(\epsilon, \delta(\epsilon))$ -DP, where

Lemma 4. Given a time-step boundary S for splitting Phase I and Phase II, a batch size m_1 , the size of the private dataset n, the data dimensions d, the pre-defined diffusion noise scale α_S , and the number of iterations N_1 , Phase I in Algorithm I asymptotically satisfies μ_1 -GDP, where

$$\mu_1 = \frac{m_1}{n} \sqrt{N_1(\exp(4d\alpha_S/(1-\alpha_S)-1))}.$$
 (15)

Lemma 5. Given a DP-SGD noise scale σ , a batch size m_2 , the size of the private dataset n, and the number of iterations N_2 , Phase II in Algorithm 1 satisfies μ_2 -GDP, where

$$\mu_2 = \frac{m_2}{n} \sqrt{N_2(\exp(1/\sigma^2) - 1)}.$$
 (16)

Theorem 2 (Differential privacy for dp-promise). *Algorithm 1* asymptotically satisfies $(\varepsilon, \delta(\varepsilon))$ -DP, it holds that

$$\delta(\varepsilon) = \Phi(-\frac{\varepsilon}{\mu} + \frac{\mu}{2}) - \exp(\varepsilon)\Phi(-\frac{\varepsilon}{\mu} - \frac{\mu}{2}), \tag{17}$$

$$\mu = \sqrt{\mu_1^2 + \mu_2^2},\tag{18}$$

where μ_1 is defined in Equation (15) and μ_2 is defined in Equation (16).

- Background & Preliminaries
- Existing Works
- Our Proposal
- Experimental Evaluation
- Conclusion

Experimental Setup

Datasets:

MNIST, Fashion-MNIST, CelebA, and CIFAR-10

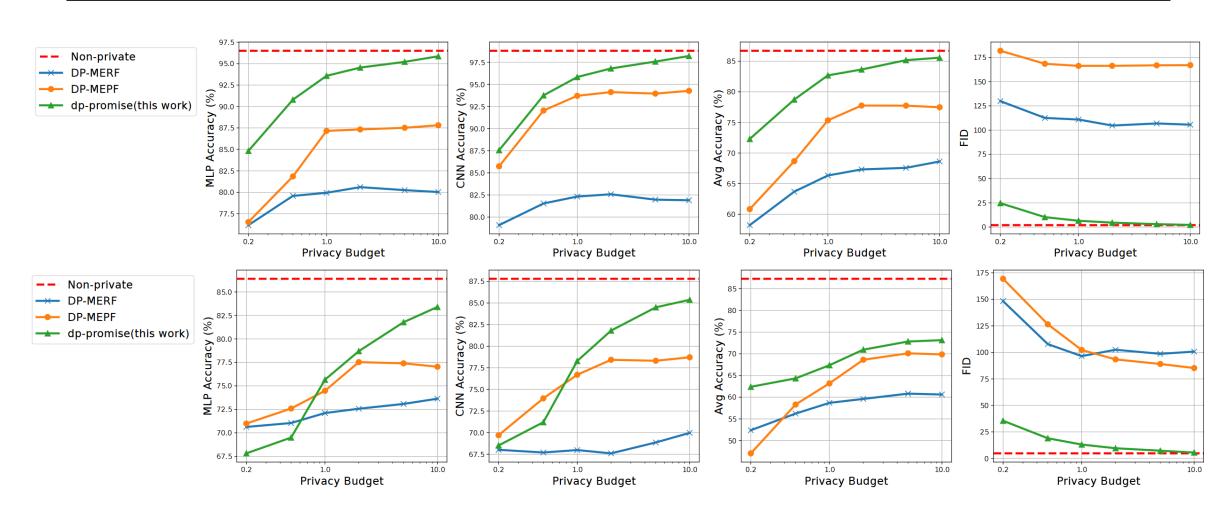
Metrics:

- Sample quality (FID, IS)
- Downstream utility (Classification accuracy)

• Baselines:

- Feature Matching: DP-MERF, DP-MEPF
- Diffusion Model: DPDM, DP-Diffusion

Gray-scale Datasets (metrics)


MNIST	D_{pub}	$\varepsilon = \infty$ (Non-private)			$\varepsilon = 10$			$\varepsilon = 1$			$\varepsilon = 0.2$						
	2 рив	MLP	CNN	Avg	FID↓	MLP	CNN	Avg	FID↓	MLP	CNN	Avg	FID↓	MLP	CNN	Avg	FID↓
DP-MERF [18]	X	80.4	83.5	70.5	104.4	80.0	83.5	68.6	105.6	80.0	82.3	66.3	110.9	76.2	79.0	58.2	133.3
DPDM (FID) [11]	X	95.7	98.6	85.7	2.0	94.5	97.8	85.4	4.4	87.7	92.7	77.8	22.4	66.4	71.2	54.1	60.8
DPDM (Acc) [11]	X	96.6	98.9	86.4	1.9	95.2	98.0	85.8	5.9	91.5	95.1	82.1	34.1	78.0	84.6	71.6	101.9
DP-MEPF [19]	\checkmark	87.6	94.3	77.9	167.2	87.8	94.3	77.5	167.0	87.2	93.7	75.3	166.3	76.5	85.7	58.3	180.2
DP-SGD DM	\checkmark	96.4	98.6	86.2	1.7	94.5	97.6	85.1	3.0	90.8	94.1	75.5	8.6	56.8	65.3	42.8	28.3
DPDM (Pub)	\checkmark	96.5	98.8	86.4	1.9	95.3	97.8	85.6	3.9	92.3	95.6	82.2	9.0	81.3	86.2	73.3	26.5
dp-promise (this work)	✓	96.4	98.7	86.1	1.6	95.9	98.2	85.6	2.3	93.6	95.8	83.0	6.6	84.8	87.6	72.3	23.1
EL' MAUCE	D .	$\varepsilon = \infty$ (Non-private)															
Fashion-MNIST	Dt	:3	= ∞ (No	n-priva	te)		ε=	10			ε =	= 1			ε=	0.2	
Fashion-MNIST	D_{pub}	ε : MLP	= ∞ (No	n-priva Avg	te) FID↓	MLP	ε =	10 Avg	FID↓	MLP	ε =	= 1 Avg	FID↓	MLP	ε= CNN	0.2 Avg	FID↓
Fashion-MNIST DP-MERF [18]	D _{pub}					MLP 72.6			FID↓ 100.7	MLP 75.1			FID↓ 96.5	MLP 70.6			FID↓ 149.8
		MLP	CNN	Avg	FID↓	I	CNN	Avg	<u> </u>	I	CNN	Avg		<u> </u>	CNN	Avg	<u>.</u>
DP-MERF [18]	<i>x</i>	MLP 73.8	CNN 63.4	Avg 63.2	FID↓ 103.3	72.6	CNN 70.0	Avg 60.6	100.7	75.1	CNN 64.0	Avg 58.7	96.5	70.6	CNN 69.0	Avg 52.4	149.8
DP-MERF [18] DPDM (FID) [11]	×	73.8 84.8	CNN 63.4 87.3	Avg 63.2 74.1	FID↓ 103.3 8.0	72.6 82.6	70.0 85.3	Avg 60.6 72.1	100.7 17.9	75.1 74.4	CNN 64.0 77.1	Avg 58.7 66.7	96.5 45.1	70.6 55.3	CNN 69.0 55.5	Avg 52.4 45.6	149.8 76.7
DP-MERF [18] DPDM (FID) [11] DPDM (Acc) [11]	X X X	73.8 84.8 86.4	CNN 63.4 87.3 87.7	Avg 63.2 74.1 73.3	FID↓ 103.3 8.0 7.0	72.6 82.6 83.1	70.0 85.3 85.4	Avg 60.6 72.1 72.6	100.7 17.9 18.1	75.1 74.4 76.1	CNN 64.0 77.1 78.6	Avg 58.7 66.7 68.8	96.5 45.1 50.3	70.6 55.3 69.2	CNN 69.0 55.5 72.7	Avg 52.4 45.6 65.5	149.8 76.7 126.5
DP-MERF [18] DPDM (FID) [11] DPDM (Acc) [11] DP-MEPF [19]	× × ×	73.8 84.8 86.4 74.9	CNN 63.4 87.3 87.7 79.4	Avg 63.2 74.1 73.3 69.7	FID↓ 103.3 8.0 7.0 86.7	72.6 82.6 83.1 74.0	70.0 85.3 85.4 78.7	Avg 60.6 72.1 72.6 66.0	100.7 17.9 18.1 89.1	75.1 74.4 76.1 74.5	CNN 64.0 77.1 78.6 76.7	Avg 58.7 66.7 68.8 63.2	96.5 45.1 50.3 102.3	70.6 55.3 69.2 71.0	CNN 69.0 55.5 72.7 69.7	Avg 52.4 45.6 65.5 47.1	149.8 76.7 126.5 167.5

Gray-scale Datasets (images)

Figure 3: The synthetic data generated by DP-MERF, DPDM, DP-MEPF, DP-SGD DM, and dp-promise under $\varepsilon = 10$ and $\delta = 10^{-5}$ on MNIST and Fashion-MNIST. The original data is presented in the last row.

Gray-scale Datasets (privacy-utility trade-off)

Color Datasets (metrics)

CelebA	D_{pub}	$\epsilon =$	10	$\epsilon =$	5	$\varepsilon = 1$	
	2 рио	FID↓	IS↑	FID↓	IS↑	FID↓	IS↑
DPDM (FID) [11]	X	20.9	2.0	45.8	2.1	72.5	2.1
DP-MEPF [19]	\checkmark	18.0	2.5	18.9	2.4	19.7	2.6
DPDM (Pub)	\checkmark	8.6	2.5	8.8	2.4	10.4	2.4
DP-Diffusion [17]	\checkmark	8.5	2.4	9.5	2.6	12.2	2.6
dp-promise (this work)	✓	6.0	2.5	6.5	2.5	9.0	2.6

CIFAR-10	D_{pub}	$\epsilon =$	10	$\varepsilon =$	5	$\varepsilon = 1$	
	2 рио	FID↓	IS↑	FID↓	IS↑	FID↓	IS↑
DPDM (FID) [11]	Х	92.8	3.7	106.5	3.5	128.4	3.4
DP-MEPF [19]	\checkmark	32.6	7.3	38.8	6.5	43.2	6.1
DPDM (Pub)	\checkmark	20.9	8.4	22.7	8.3	27.6	8.2
DP-Diffusion [17]	\checkmark	19.8	8.2	23.5	8.1	26.5	8.5
dp-promise (this work)	✓	17.9	8.6	18.9	8.7	21.8	9.1

Higher Resolution & Ablation Studies

Methods	$\varepsilon = 10$		$\varepsilon = 5$		$\varepsilon = 1$	
	FID↓	IS↑	FID↓	IS↑	FID↓	IS↑
DPDM (Pub) dp-promise (this work)			50.2 26.2			2.5 2.7

Methods	MNIST				Fashion-MNIST			
Wittious	MLP	CNN	Avg	FID↓	MLP	CNN	Avg	FID↓
without Phase I with Phase I		97.8 98.1		2.5 2.3			72.7 72.5	6.8 6.5

- Background & Preliminaries
- Existing Works
- Our Method
- Experimental Evaluation
- Conclusion

Conclusion

- We introduce dp-promise, a new framework for training differentially private diffusion models.
- Our method first leverages the noise in the forward process to reduce information loss in private training.
- We provide DP theoretical analysis.
- Experimental results show dp-promise's effectiveness under practical privacy budgets.

Thank you for your time!

Contact: wanghch@njust.edu.cn

Code: https://github.com/deabfc/dp-promise