Property Existence Inference against Generative Models

Lijin Wang¹, Jingjing Wang¹, Jie Wan¹, Lin Long¹, Ziqi Yang^{1,2*}, Zhan Qin^{1,2}

¹ Zhejiang University,

² ZJU-Hangzhou Global Scientific and Technological Innovation Center

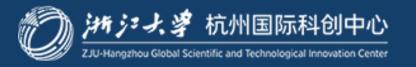


Image Generative Models: Produce Images

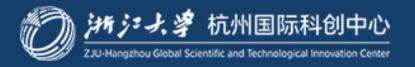
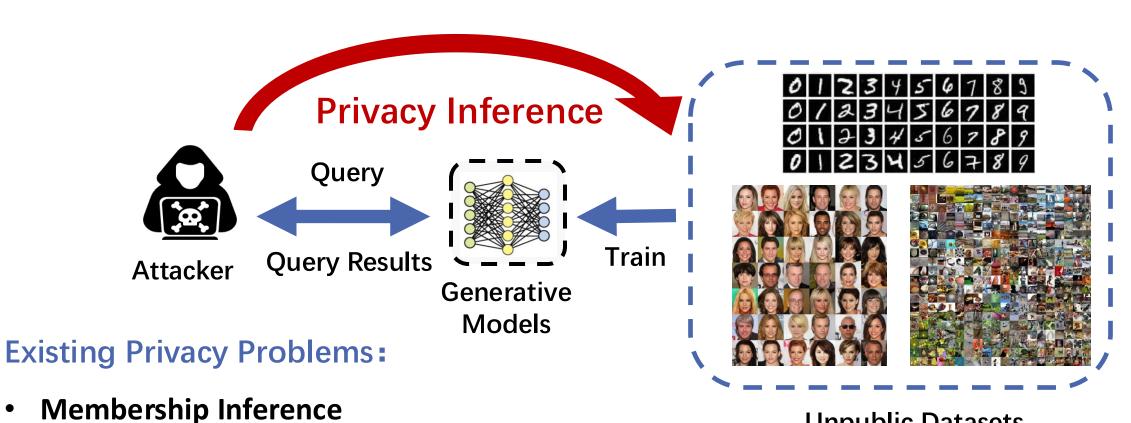
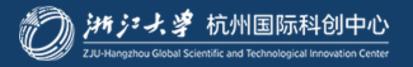


Image Generative Models: Privacy Problems



Property Inference

Unpublic Datasets



Existing Privacy Problems

Membership Inference

To infer whether specific sample is in the training dataset of the target model

Property Inference

To infer the accounting ratio of specific property

Training Dataset

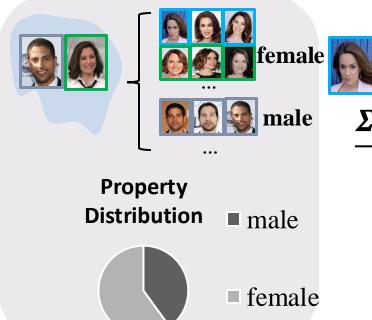
Target Sample

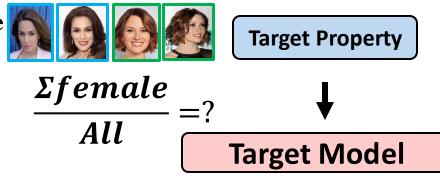
 $data \in training \ dataset?$

Target Model

Member

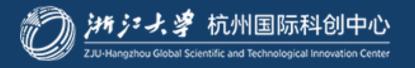
Nonmember **S**





female:

4



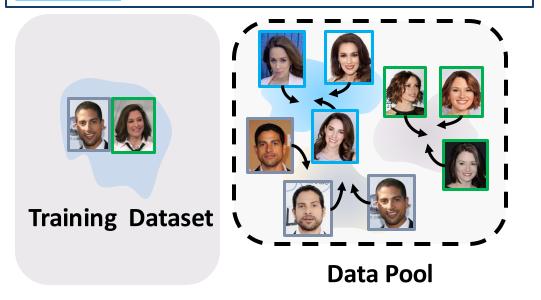
Proposed: Property Existence Inference

Membership Inference

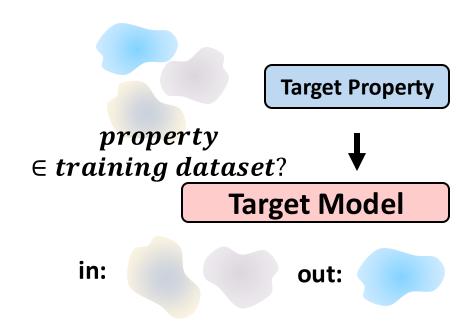
To infer whether <u>specific sample</u> is in the training dataset of the target model

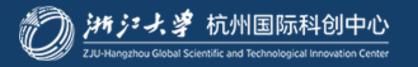
Property Inference

To infer the accounting ratio of <u>specific</u> property



To infer whether <u>specific property</u> is in the training dataset of the target model





Proposed: Property Existence Inference

Compared with Membership Inference

a more practical setting - target sample **f** sample in the training dataset

Compared with Property Inference

Interested in property accounting for small proportion < 0.1%

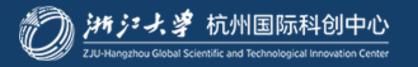
Q1 Does StableDiffusion use van gogh's artw Property Existence Inference

Q2 Does StableDiffusion use 《The Mona Lisa's Sn Membership Inference

Q3 How much females' photos does StableDiffusion us Property Inference

Adversarial Knowledge:

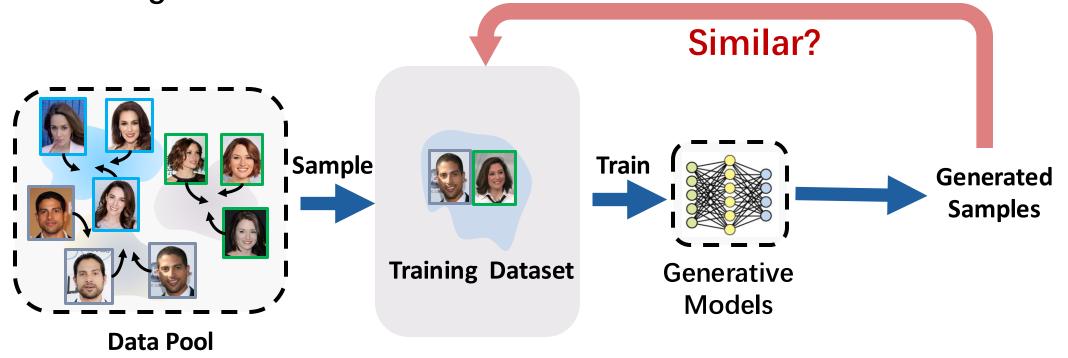
Black-box Scenario - Attacker can only get the generated results of the target model

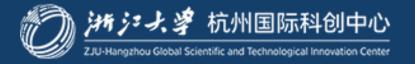


Property Existence Inference: Basic Ideas

Motivation

Generated Images may carry property that generative models have seen in the training dataset.





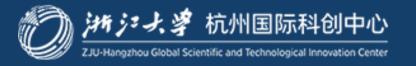
Property Existence Inference: Overview

Stage I - Property Extractor Training Catch the feature of the target property

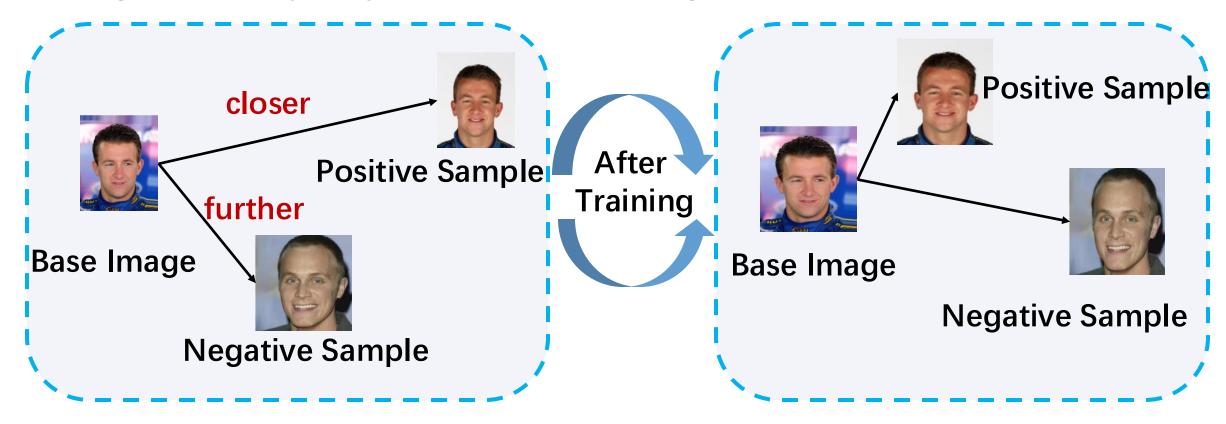
Stage II - Similarity Computation

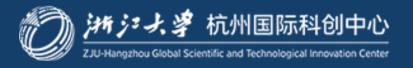
Measure the similarity between target property and the generated images

Stage III – Distinguish Test Choose a threshold to distinguish in-properties from out-properties

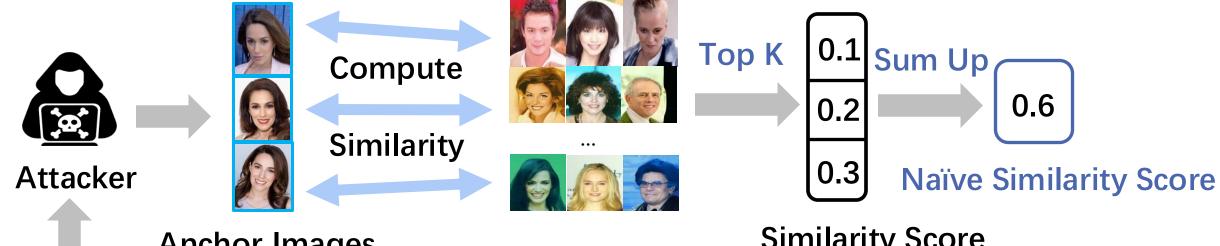


Stage I: Property Extractor Training





Stage II: Similarity Computation (Naïve)



Anchor Images with Target Property

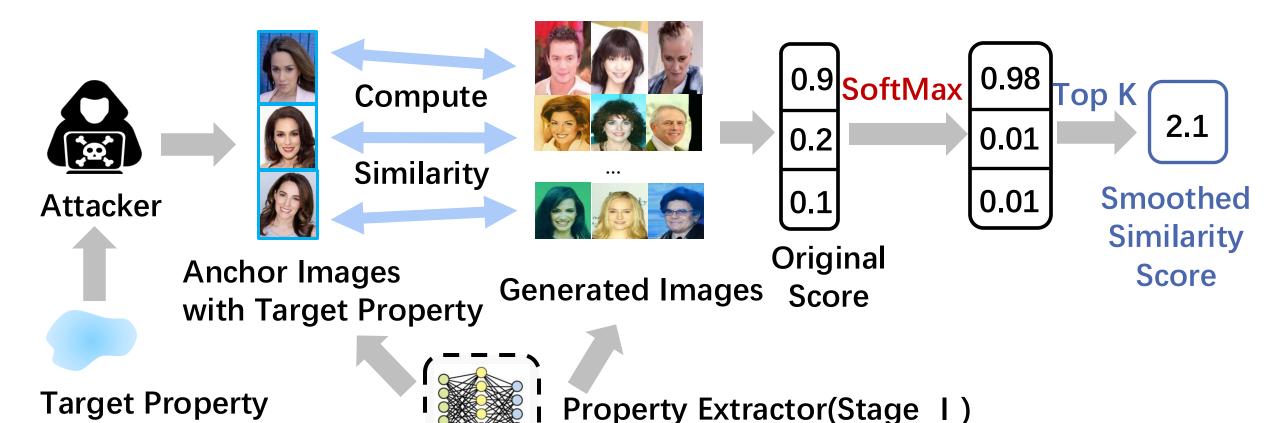
Generated Images

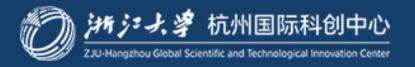
Similarity Score of Anchor Images

Target Property

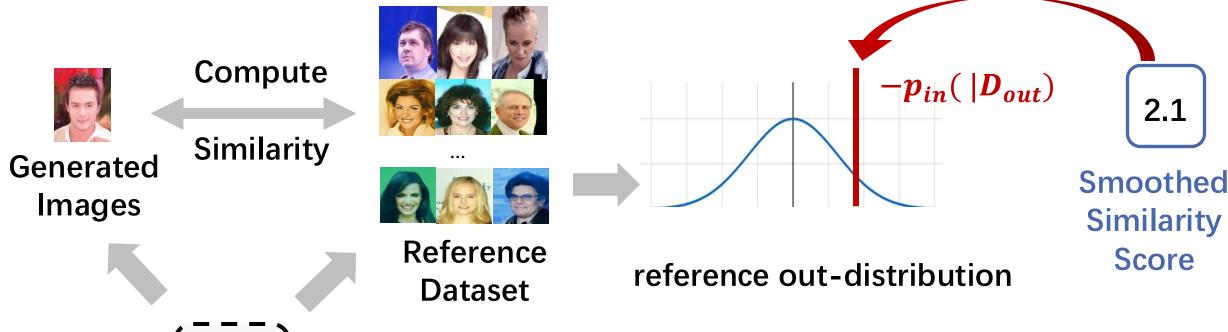


Stage II: Similarity Score Smoothing-remove uncertainty of anchor images





Stage II: Likelihood Calibration-remove uncertainty of generated images

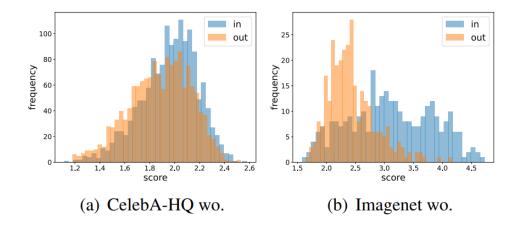


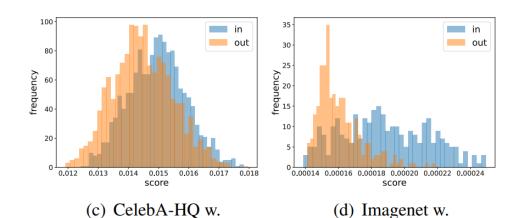
Property Extractor(Stage I)

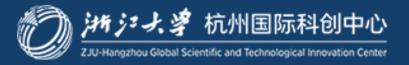


Stage II: Similarity Computation

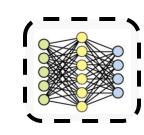
Naïve Similarity Score Smoothed Similarity Score

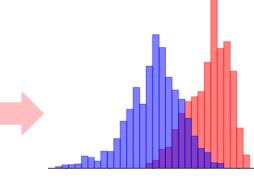






Stage **Ⅲ**: Distinguishing Test





Similarity Score
Distribution
of All Properties

Attacker

Shadow Models

Final Threshold:

$$T=rac{(\mu_0\sigma_1^2-\mu_1\sigma_0^2)\pm2\sigma_1\sigma_0\sqrt{\left(rac{\mu_1-\mu_0}{2}
ight)^2+(\sigma_0^2-\sigma_1^2)\log\left(rac{\sigma_0}{\sigma_1}
ight)}}{\sigma_1^2-\sigma_0^2}$$

With the Same Variation:

$$ext{T} = rac{\mu_1^2 \sigma_1^2 - \mu_0^2 \sigma_1^2}{2 \left(\mu_1 \sigma_1^2 - \mu_0 \sigma_1^2
ight)} = rac{\mu_0 + \mu_1}{2}$$



Evaluation Setup

Target Image Generative Model (all with 256x256 pixels)

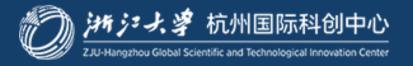
- Diffusion Models: DiT, Guided Diffusion
- GANs: styleGAN-xl, VQGAN
- VAEs: Latent VAE, RQVAE

Datasets & Target Properties & in:out

- ImageNet: classes, 300-in-300-out
- CompCars: car models, 200-in-200-out
- CelebA-HQ: Identity, 1500-in-1500-out

Size

Training & Generated Images: 256x256 pixels

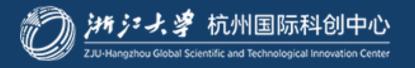


Overall Inference Performance

 Most of the generative models are vulnerable to the property existence inference. (AUC>0.9)

 Property existence inference performs similarly against generative models trained onthe same dataset.

	Model		FID	PEI(Ours)			PIA(Baseline)		
Dataset				AUC	ACC	TPR@1%FPR	AUC	ACC	TPR@1%FPR
ImageNet	DMs	DiT	2.27	0.98	0.92	53.7%	0.81	0.79	4.6%
		guided	4.59	0.81	0.78	27.3%	0.67	0.68	0%
	GANs	styleGAN-x1	2.30	0.98	0.92	43.3%	0.82	0.79	2.4%
		VQGAN	5.2	0.94	0.88	41.3%	0.76	0.73	3.0%
	VAEs	Latent VAE	9.34	0.96	0.91	51.0%	0.72	0.69	0.7%
		RQVAE	4.45	0.96	0.90	41.7%	0.78	0.79	1.7%
CompCars	DMs	DDPM	9.75	0.97	0.95	89.0%	0.87	0.86	64.7%
		DDIM	12.85	0.96	0.92	80.0%	0.81	0.77	19.0%
	GANs	StyleGAN3	28.87	0.96	0.92	17.0%	0.66	0.63	19.4%
		Projected GAN	8.47	0.97	0.94	60.0%	0.86	0.80	30.0%
	VAEs	Efficient-VDVAE	78.12	0.95	0.91	75.0%	0.72	0.71	34.7%
		Softintro VAE	75.81	0.96	0.90	64.0%	0.77	0.74	25.4%
CelebA-HQ	DMs	DDPM	20.25	0.64	0.61	2.9%	0.59	0.58	2.2%
		LDM	19.82	0.63	0.60	2.3%	0.54	0.54	3.2%
	GANs	StyleGAN3	15.68	0.64	0.60	2.8%	0.58	0.57	2.4%
		VQGAN	19.32	0.64	0.60	2.7%	0.59	0.57	2.4%
	VAEs	NVAE	44.31	0.62	0.59	3.7%	0.53	0.53	1.3%
		Efficient-VDVAE	23.55	0.63	0.60	3.1%	0.54	0.54	2.3%



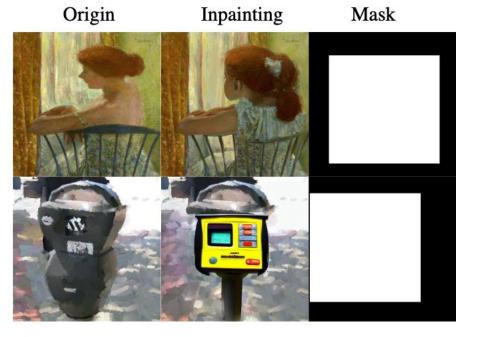
Case Study: Real-world Generative Models

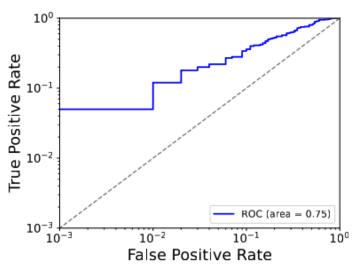
Target Model: Stable-Diffusion Target Property: Artist's Style

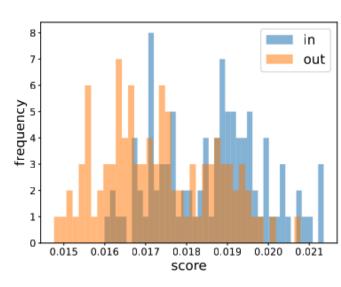
Attack AUC = 0.75

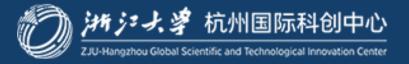
In-Property

Out-Property



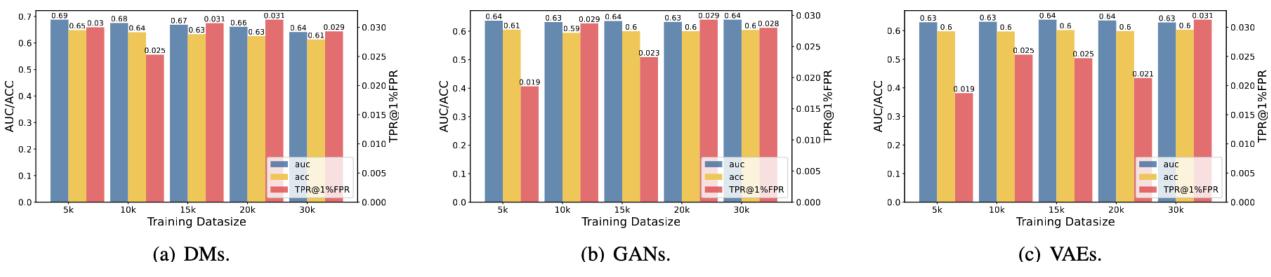




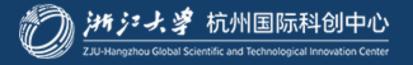


Inference Influence

Size of the Training Dataset Not Sensitive



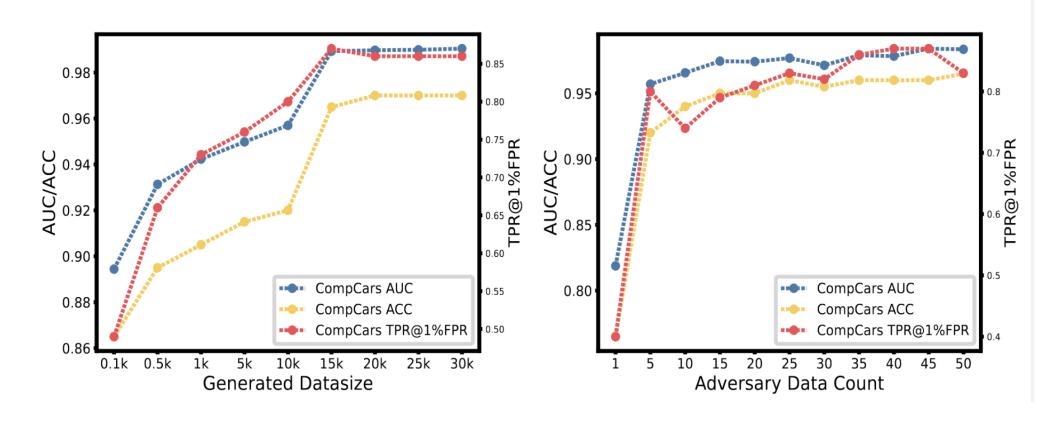
Overfitting is not the main reason of the property existence inference.

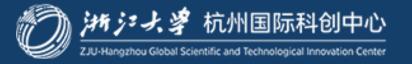


Inference Influence

Adversarial Knowledge

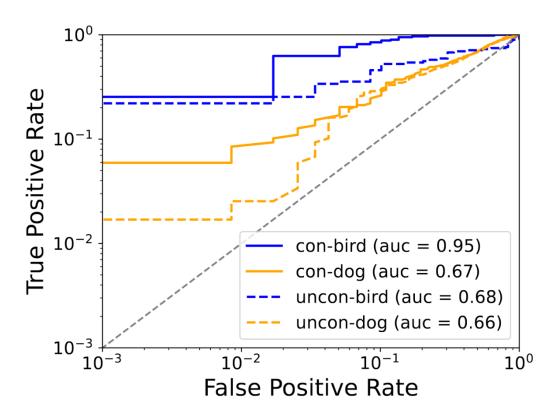
Positive Correlation





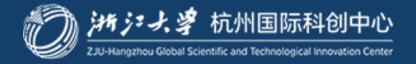
Inference Influence

Property Granularity



Positive Correlation

 Properties at a finer granularity level results in higher inference difficulty



Conclusion

- we present property existence inference against generative models to determine whether any samples with target property are contained in the training set of the target model.
- We have demonstrated through a comprehensive set of evaluations that property existence inference can effectively extract property existence information in generative models including large scale models like Stable Diffusion.

Property Existence Inference against Generative Models

Contact Authors yangziqi@zju.edu.cn

Thank you!

