
GraphGuard: Private Time-Constrained Pattern
Detection Over Streaming Graphs in the Cloud

Yifeng Zheng

1

Songlei Wang Xiaohua Jia

33rd USENIX Security Symposium

Streaming graphs

• Streaming graphs: vertices and edges change over time

• Widely seen in many practical applications

2Social media Financial networks Computer networks

Storing and querying graphs in the cloud is popular

• Harness the benefits of cloud computing like cost efficiency, scalability,
ubiqiutous access, etc.

3

Concerns on data privacy

• Streaming graphs contain rich information
− Might be privacy-sensitive (e.g., personal

connections) or proprietary to the graph owner

• Cloud data breaches happen from time to time
− E.g., 39% of businesses faced a cloud

environment data breach last year
[2023 Thales Cloud Security Report]

4[2023 Thales Cloud Security Report]https://cpl.thalesgroup.com/about-us/newsroom/2023-cloud-security-cyberattacks-data-breaches-press-release

Concerns on data privacy

• Streaming graphs contain rich information
− Might be privacy-sensitive (e.g., personal

connections) or proprietary to the graph owner

• Cloud data breaches happen from time to time
− E.g., 39% of businesses faced a cloud

environment data breach last year
[2023 Thales Cloud Security Report]

5[2023 Thales Cloud Security Report]https://cpl.thalesgroup.com/about-us/newsroom/2023-cloud-security-cyberattacks-data-breaches-press-release

Essential to secure the outsourced streaming graphs and queries!

Our focus: time-constrained graph pattern detection

• Aim: continuously detect subgraphs that match a given query pattern
− Important for applications like credit card fraud detection [Qiu et al., VLDB’18] and

cyber-attack detection [Choudhury et al., EDBT’15]

• What makes a “match”?
− Structure is matched, i.e., isomorphism
− The labels of edges are matched
− Edge timing order matching, i.e., edge occurrence orders adhere to the timing order

constraints specified by the query pattern

6

Example of time-constrained graph pattern detection

7

A streaming graph 𝔾 = {𝑒!}!∈[$], where 𝑒! = (𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!)

7

8
e1005

4

9
002 e2

4

1
002 e3

5

4
001 e4

8

4
004 e5

2

8
005 e6

5

8
006 e7

1

3
003 e8

6

4
001 e9

5

1
007 e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

Endpoints 𝑠𝑖𝑑!

Endpoints 𝑒𝑖𝑑!

Indicate the connection
relationships between edges

Example of time-constrained graph pattern detection

8

A streaming graph 𝔾 = {𝑒!}!∈[$], where 𝑒! = (𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!)

7

8
e1005

4

9
002 e2

4

1
002 e3

5

4
001 e4

8

4
004 e5

2

8
005 e6

5

8
006 e7

1

3
003 e8

6

4
001 e9

5

1
007 e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

Labels 𝑙!

Indicate the type of connection between two vertices

Example of time-constrained graph pattern detection

9

A streaming graph 𝔾 = {𝑒!}!∈[$], where 𝑒! = (𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!)

7

8
e1005

4

9
002 e2

4

1
002 e3

5

4
001 e4

8

4
004 e5

2

8
005 e6

5

8
006 e7

1

3
003 e8

6

4
001 e9

5

1
007 e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

Timestamps 𝑡!

Example of time-constrained graph pattern detection

10

7

8
e1005

4

9
002 e2

4

1
002 e3

5

4
001 e4

8

4
004 e5

2

8
005 e6

5

8
006 e7

1

3
003 e8

6

4
001 e9

5

1
007 e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

𝑒! appears at timestamp
“1” and is an edge with

label “005” that connects
the vertex with ID “7” to

the vertex with ID “8”
Time window

A snapshot

005
006

001

σσ4
004

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

σσ3
σσ2

σσ18 4

5

2

1

7 3

9

e1 e7 e4 e8
e3
e2e6

6
e9

e5

Query pattern

Timing order
constraints

Example of time-constrained graph pattern detection

11

7

8
e1005

4

9
002 e2

4

1
002 e3

5

4
001 e4

8

4
004 e5

2

8
005 e6

5

8
006 e7

1

3
003 e8

6

4
001 e9

5

1
007 e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

𝑒! appears at timestamp
“1” and is an edge with

label “005” that connects
the vertex with ID “7” to

the vertex with ID “8”
Time window

A snapshot

005
006

001

σσ4
004

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

σσ3
σσ2

σσ18 4

5

2

1

7 3

9

e1 e7 e4 e8
e3
e2e6

6
e9

e5
8 4

57

005
006

001
004
e5

e4
e7

e1

Query patternA time-constrained
match

Timing order
constraints

𝑒! ≺ 𝑒" ≺ 𝑒#; 𝑒$ ≺ 𝑒#

Related works on privacy-aware graph query processing

• Mainly focus on privately querying static graphs
− Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD’23]

− Private shortest path search [Ghosh et al., AsiaCCS’21]

− Private breadth-first search [Araki et al., CCS’21]

Shortest path search Breadth-first search

12

Subgraph matching

Related works on privacy-aware graph query processing

• Mainly focus on privately querying static graphs
− Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD’23]

− Private shortest path search [Ghosh et al., AsiaCCS’21]

− Private breadth-first search [Araki et al., CCS’21]

Shortest path search Breadth-first search

13

Subgraph matching

No prior work on privacy-preserving time-constrained
pattern detection over streaming graphs.

Our research effort: GraphGuard

• The first framework for privacy-preserving outsourcing of time-
constrained pattern detection over streaming graphs

− Protect the confidentiality of edge/vertex labels and the connections between
vertices in the streaming graph and query patterns

14

System architecture of GraphGuard

15

Regulator
7. Detection result

1. Query pattern

4. Encrypted
 edges

Users

5. Secure time-constrained
pattern detection over the

secret-shared streaming graph
S1

S3

S2

Front-end

3. Edges

2. Encrypted
 query pattern

6. Encrypted
 detection result

Untrusted domain

Assumption: semi-honest and
non-colluding cloud servers
(same as prior security designs
[Bell et al., CCS’22], [Tan et al.,
S&P’21], [Wang et al., VLDB’22])

Trusted domain

Untrusted domain

Security guarantees

16

*

*
e1*

*

*
* e2

*

*
* e3

*

*
* e4

*

*
* e5

*

*
* e6

*

*
* e7

*

*
* e8

*

*
* e9

*

*
* e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

• Protect each edge’s label
• Hide the connections between the vertices
• Public info: timestamps

Protected streaming graph

*
*

*

σσ4
*

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

σσ3
σσ2

σσ1

* * *

Protected query pattern

• Protect each edge’s label
• Hide the connections between the vertices
• Hide the timing order constraints between

each pair of edges

During the online detection process: Hide the search access patterns

Cryptographic tool: Replicated Secret Sharing

17

• Can be used to protect secret values
• Given the RSSs of two secret values, we can securely perform:

üAddition/subtraction (only local processing needed)
üMultiplication (need one communication round)

Note: Denote the RSS of 𝑥 by 𝑥

Our technical design

18

How to protect the streaming graph?

Streaming graph encryption
• GraphGuard processes each edge independently, facilitating subsequent dynamic updates

− Each edge is modeled as a tuple 𝑒! = 𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!
• GraphGuard uses RSS to protect the private values, including 𝑠𝑖𝑑! , 𝑒𝑖𝑑! , 𝑙!

− GraphGuard encodes each private value into a one-hot vector, and encrypts each bit via RSS
• For ensuring efficient equality test in the secret sharing domain

19

s i dxs i dx

ei dxei dx

lxlx exex

txtx
A new generated edge

Modeling
𝑒% = (𝑠𝑖𝑑% , 𝑒𝑖𝑑% , 𝑙% , 𝑡%)

One-hot encoding

𝑒% = (𝒔𝒊𝒅% , 𝒆𝒊𝒅% , 𝒍% , 𝑡%)
RSS

𝑒% = (𝒔𝒊𝒅% , 𝒆𝒊𝒅% , 𝒍% , 𝑡%)

S1

The secret-shared streaming graph 𝔾 = 𝑒% %∈[(]

S2 S3

• 𝑠𝑖𝑑!: The ID of the
source of edge 𝑒!

• 𝑒𝑖𝑑!: The ID of the
target of edge 𝑒!

• 𝑙!: 𝑒!’s label
• 𝑡!: 𝑒!’s timestamp

Our technical design

20

How to protect the query pattern?

Query pattern modeling

21

• It is easy to model the labels of the query pattern
− ℒ = 𝑙", 𝑙#, ⋯

• How to model the structure?
− Goal: Facilitate efficient graph isomorphism checking in the secret sharing domain

• How to model timing order constraints?
− Goal: Facilitate edge temporal consistency checking in the secret sharing domain

005
006

001

σσ4
004

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

σσ3
σσ2

σσ1
005

006
001

004

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

Modeling the structure

• To check graph isomorphism, a common strategy is to find the bijective
match function by constructing the search tree along the connections
between vertices

− Difficult to realize in the secret sharing domain

• Therefore, we propose a new data structure - endpoint adjacency matrix
(EAM) - to model vertex connections

− With EAM, checking graph isomorphism can be simplified as the comparison
between their EAMs, consisting of only basic “⊕” and “⊗” operations

22

Modeling the structure
• We enumerate all possible cases of connection relationships, considering the edge

directions, between two edges and assign a 4-bit element to each case:

23

Rules:
• If the sources of 𝑒* and 𝑒+ are connected: The first bit of 𝐌 𝑖, 𝑗 is equal to 1
• If the targets of 𝑒* and 𝑒+ are connected: The second bit of 𝐌 𝑖, 𝑗 is equal to 1
• If the target of 𝑒* is connected to the source of 𝑒+: The third bit of 𝐌 𝑖, 𝑗 is equal to 1
• If the source of 𝑒* is connected to the target of 𝑒+: The fourth bit of 𝐌 𝑖, 𝑗 is equal to 1

Modeling the timing order constraints

• Decompose the query into timing-connected subquery patterns (TC-subquery patterns)
inspired by the plaintext method [Li et al., TKDE’22]

− To simplify the representation and efficient evaluation of timing order constraints

24

There is a strict sequential timing order relationship among all the edges
in each TC-subquery pattern, i.e., 𝜎(≺ ⋯ ≺ 𝜎)

Query pattern Q

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

005
006

001

σσ4
004

σσ3

σσ2

σσ1

Two TC-subquery patterns:

005
006

σσ4
004

σσ2

σσ1 σσ3001Q1: Q2:

σ1 ≺ σ4 ≺ σ2σ1 ≺ σ4 ≺ σ2

Example:

Query pattern modeling and encryption

25

Query pattern Q

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

005
006

001

σσ4
004

σσ3

σσ2

σσ1

Two TC-subquery patterns:

005
006

σσ4
004

σσ2

σσ1 σσ3001Q1: Q2:

σ1 ≺ σ4 ≺ σ2σ1 ≺ σ4 ≺ σ2

Modeling

EAM 𝐌 =
0000 0100 0000 0010
0100
0000
0001

0000
1000
0001

1000
0000
0100

0010
0100
0000

Label set ℒ = 005, 006, 001, 004

Decompositions 𝒴 = {𝒚! = 1,4,2 , 𝒚, = [3]}

RSS
ℚ = 𝐌 , ℒ ,𝒴

S1 S2 S3

Our technical design

26

How to securely detect time-constrained matches over each
secret-shared snapshot?

Workflow

1. Secure matched edges fetching
− Securely fetch the matched edges for each edge in each TC-subquery pattern

• Matched edges: The edges whose labels are identical to those in the query pattern

2. Construct candidate partial matches
− Construct candidate partial matches by the edges from different matched edge sets that

obey the timing order constraints of TC-subquery pattern

3. Secure candidate partial matches filtering
− Securely filter out candidate partial matches whose structures are inconsistent with the

corresponding TC-subquery patterns, to obtain the partial matches

4. Secure partial matches compatibility checking
− Securely check the timing orders and structural compatibility among partial matches to

produce the detection result
27

Secure matched edges fetching

28

*

*
e1*

*

*
* e2

*

*
* e3

*

*
* e4

*

*
* e5

*

*
* e6

*

*
* e7

*

*
* e8

*

*
* e9

*

*
* e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10
Time window

*
*

σσ4
*

σσ2
σσ1

Secret-shared TC-subquery pattern ℚ"Secret-shared snapshot 𝔾$

Directly reveal the test results?

No, leak the access pattern

Secure equality testOblivious dummy edges
padding on the snapshot

Reveal the
results

Secret-shared matched edges

Oblivious dummy edges padding

29

How to appropriately set the number of dummy edges to balance the trade-off
between efficiency and privacy?

Challenge

Draw the number from discrete Laplace distribution 𝐿𝑎𝑝 𝜀, 𝛿, Δ to make the leakage
about the frequency of edge labels differentially private.

Solution

The drawn number
cloud be negative

Issue

Truncate it to 0:
max 𝐿𝑎𝑝 𝜀, 𝛿, Δ , 0

Solution

• Δ = 1
• 𝜇 = − *+ ,--(.((01)

3

Parameters

Refer to Section 5 of our paper for the proof of the DP guarantee

Evaluation setup
• Implementation: Python and C++

• Dataset: three real-world graph datasets:
− MOOC user action (MOOC)1: 7,143 vertices and 411,749 temporal edges

− Reddit hyperlink network (Reddit)2: 55,863 vertices and 858,490 temporal edges

− com-DBLP (DBLP)3: 317,080 vertices and 1,049,866 edges

• Deployment

− Cloud servers: A workstation with 24 Intel Xeon Gold 6240R CPU cores and 128 GB RAM running Ubuntu 20.04.3
LTS (latency: 10 ms)

− Front-end: a MacBook Air with 8 GB of RAM

• Baseline: using the generic and popular framework MP-SPDZ [Keller et al., CCS’20]

1. https://snap.stanford.edu/data/act-mooc.html
2. https://snap.stanford.edu/data/soc- RedditHyperlinks.html
3. https://snap.stanford.edu/data/com-DBLP.html 30

https://snap.stanford.edu/data/act-mooc.html
https://snap.stanford.edu/data/soc-%20RedditHyperlinks.html
https://snap.stanford.edu/data/com-DBLP.html

Evaluation on query latency

31

• The query latency gap between GraphGuard and the baseline increases significantly as the
values of window size 𝑊 and query pattern size ℚ increase
• The results clearly demonstrate that GraphGuard consistently outperforms the baseline,

achieving a substantial speedup ranging from 29× to 60×

(a) ℚ = 12, W ∈ 1×10!, 5×10!
(b) W = 3×10!, ℚ ∈ [6,9,12,15,18]

Evaluation on the server-side communication cost

32

• Communication cost savings of GraphGuard compared to the baseline increase
significantly as the values of 𝑊 and query pattern size ℚ increase
• GraphGuard consistently outperforms the baseline, achieving substantial communication

cost savings ranging from 96% to 98%

(a) ℚ = 12, W ∈ 1×10!, 5×10!
(b) W = 3×10!, ℚ ∈ [6,9,12,15,18]

Summary

• The first framework for privacy-preserving outsourcing of time-constrained pattern
detection over streaming graphs

− Bridge insights on graph processing and lightweight cryptography

− Achieve secure subgraph isomorphism search on dynamic graphs

• GraphGuard substantially outperforms the baseline constructed by the generic MPC
framework

− 60× improvement in query latency and up to 98% savings in communication

• Directions for future work:
− The support for malicious security

− The support for vertex/edge deletion
33

34

Thank You!
Q&A?

songlei.wang@outlook.com

