33rd USENIX Security Symposium

GraphGuard: Private Time-Constrained Pattern
Detection Over Streaming Graphs in the Cloud

Songlei Wang Yifeng Zheng Xiaohua Jia

AN ,é'ﬁ L‘ﬁ .7 4k %(Uak *J'[) @
* o reeHNOLOGY. < B 0 K B

City University of Hong Kong

Streaming graphs

* Streaming graphs: vertices and edges change over time

P A —

C
C
C

Time
to t) t3 ty

. W1dely seen 1n many practical applications

T har 10039 financial_transactions

aaaaa t: $3000 70

Social media Financial networks Computer networks

Storing and querying graphs in the cloud is popular

* Harness the benefits of cloud computing like cost efficiency, scalability,
ubiqiutous access, etc.

“ AWS is cost-efficient and helps us deliver
products earlier without purchasing
physical hardware.”

Glrbnb ¥ EEE Jui-Nan Lin
: - bll——= — NG Team Lead of R&D Dept, PIXNET
[e o | AT . & | g
e e C il i §

Airbnb on AWS

Founded in 2008, San Francisco-based Airbnb is a community
marketplace with over 7 million accommodations and more than
40,000 unique Experiences for customers to book on the company’s
website or through its iOS and Android applications.

Customer Stories | Architecture | Additional Resources

Concerns on data privacy

* Streaming graphs contain rich information

— Might be privacy-sensitive (e.g., personal
connections) or proprietary to the graph owner

* Cloud data breaches happen from time to time

—E.g., 39% of businesses faced a cloud
environment data breach last year
[2023 Thales Cloud Security Report]

Concerns on data privacy

* Streaming graphs contain rich information

— Might be privacy-sensitive (e.g., personal
connections) or proprietary to the graph owner

* Cloud data breaches happen from time to time

—E.g., 39% of businesses faced a cloud
environment data breach last year
[2023 Thales Cloud Security Report]

Essential to secure the outsourced streaming graphs and queries!

Our focus: time-constrained graph pattern detection

* Aim: continuously detect subgraphs that match a given query pattern

— Important for applications like credit card fraud detection [Qiu et al., VLDB’18] and
cyber-attack detection [Choudhury et al., EDBT 15]

 What makes a “match”?

— Structure 1s matched, 1.e., Isomorphism
— The labels of edges are matched

— Edge timing order matching, 1.e., edge occurrence orders adhere to the timing order
constraints specified by the query pattern

Example of time-constrained graph pattern detection

Indicate the connection Endpomts sid,]
relationships between edges

le ﬁ 001184 00{85 OO{% OO{& 00% 1001))€9 (007|€10e o o
= tz— 3= le=6 [(1=7 1[8=8

t 5 t9=9 fio=1

Endpomts eid, J

A streaming graph G = {ey}xe[x), where ey = (sidy, eidy, ly, ty)

Example of time-constrained graph pattern detection

Indicate the type of connection between two vertices

[Labelsl } El \%ez |_ﬁDes % [004)es OO{& oo{& OO% [001)e9 ooiem. oo
= h= 3 l4=4 ts— le=6 171=7 [8=28

= 99t10 10

A streaming graph G = {ey}xe[x), where ey = (sidy, eidy, [y, ty)

Example of time-constrained graph pattern detection

1 tz— 3=3 l‘4— ts— l‘6— t7— 1s=38

t9—9 fio=1

Tlmestamps Ly]

A streaming graph G = {ey}xe[x), where ey = (sidy, eidy, [y, ty)

Example of time-constrained graph pattern detection

4 e, appears at timestamp
“1” and 1s an edge with
label “005” that connects -61 002)e2 | 2les [00D|es -85 005les [006)e7 [003)es [00Dley [007(€10e o o
the vertex with ID “7” to
' “g” t1 tz t3— t4— ts— t6— t7— I3=28

_ the vertex with [D “8 tio=

Time wmdow

Qo O

@
@é’ sl 1]
S

A snapshot Query pattern

Timing order
constraints

10

01 < 04 < 0,,03 <0,

Example of time-constrained graph pattern detection

4 e, appears at timestamp
“1” and 1s an edge with
label “005” that connects -61 002)e2 | 2les [00D|es -85 005les [006)e7 [003)es [00Dley [007(€10e o o
the vertex with ID “7” to
' t1 tz— t3— t7— I3=18

_ the vertex with D “8” t4 = ts = t6 = to=
|~ Time wmdow q

61<65<37;e4<e7

Ofi O

005 el 001>e4 <

006
e7

Timing order

constraints

01 < 04 < 0,,03 <0,

A time-constrained

match A snapshot Query pattern

11

Related works on privacy-aware graph query processing

* Mainly focus on privately querying static graphs
— Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD’23]
— Private shortest path search [Ghosh et al., AsiaCCS21]
— Private breadth-first search [Araki et al., CCS’21]

@ Source Node
AN \ ¢
P
-
-
-
-
»”

e°@

Subgraph matching Shortest path search Breadth-first search

12

No prior work on privacy-preserving time-constrained
pattern detection over streaming graphs.

Our research effort: GraphGuard

* The first framework for privacy-preserving outsourcing of time-
constrained pattern detection over streaming graphs

—Protect the confidentiality of edge/vertex labels and the connections between
vertices 1n the streaming graph and query patterns

14

System architecture of GraphGuard

Untrusted domain
< >
g 5. Secure time-constrained g

S pattern detection over the S
secret-shared streaming graph
S3
4. Encrypted 2. Encrypted 6. Encrypted
edges query pattern detection result

'ﬁ‘“. m 3. Edges E]: 1. Query pattern - %

7. Detection result
Users Front-end Regulator

Untrusted domain

Assumption: semi-honest and
non-colluding cloud servers
(same as prior security designs
[Bell et al., CCS’22], [Tan et al.,
S&P’21], [Wang et al., VLDB’22])

Trusted domain

15

Security guarantees

04

A* A
\\ *|63
[Fler [3)e [F)es [*)es [F)es [* les [* ler *@Eﬁz *ﬁao--- O azb
ONONONONONO,

=1 h=2 (=3 (=4 1=5 16=6 l‘7— l‘8=8 t9=9 t10—10 % 0y % 05,05 % O,
Protected streaming graph Protected query pattern
* Protect each edge’s label * Protect each edge’s label
* Hide the connections between the vertices » Hide the connections between the vertices
* Public info: timestamps * Hide the timing order constraints between

each pair of edges

During the online detection process: Hide the search access patterns

16

Cryptographic tool: Replicated Secret Sharing

Note: Denote the RSS of x by [[x] ((x)1, (x)2)

/-[(x)1 =1 €EZy
[xEZzz]—H (X), =1, €EZ, }
\—[(x)g, =x—-1n-—-1n€Z,u]

* Can be used to protect secret values

((x)2,(x)3)

((x)3,(x)1)

* Given the RSSs of two secret values, we can securely perform:
v" Addition/subtraction (only local processing needed)

v Multiplication (need one communication round)

17

Our technical design

Q

How to protect the streaming graph?

18

* [,:e,’s label L

Streaming graph encryption

* GraphGuard processes each edge independently, facilitating subsequent dynamic updates

— Each edge is modeled as a tuple e,, = (sid,, eid,, L, t,)

* GraphGuard uses RSS to protect the private values, including sid,., eid,., L,
— GraphGuard encodes each private value into a one-hot vector, and encrypts each bit via RSS

* For ensuring efficient equality test in the secret sharing domain

sid,: The ID of the
source of edge e,

eid,,: The ID of the @ I One-hot encoding
target of edge e,

¢. Modeling

o) o, = (sid,,eid,, [, t,)

"

I

t,: e,’s timestamp

A new generated edge

RSS | : :
ex = (Sidxr eidx; lx; tx) — [[ex]] = ([[Sldx]]r [[eldx]]) [[lx]]; tx)

*] *

n
0‘ = ‘0

The secret-shared streaming graph [G] = {[[ex]]}xe[x]

19

Our technical design

Q

How to protect the query pattern?

20

Query pattern modeling

* It 1s easy to model the labels of the query pattern
- L= {ll; l21 }
* How to model the structure?

— Goal: Facilitate efficient graph isomorphism checking in the secret sharing domain

* How to model timing order constraints?

— Goal: Facilitate edge temporal consistency checking in the secret sharing domain

01 <04 < 05,03 <0y | > 6| < 04 < 65,03 < Oy

21

Modeling the structure

* To check graph 1somorphism, a common strategy 1s to find the bijective
match function by constructing the search tree along the connections
between vertices

— Difficult to realize 1n the secret sharing domain

* Therefore, we propose a new data structure - endpoint adjacency matrix
(EAM) - to model vertex connections

— With EAM, checking graph isomorphism can be simplified as the comparison
between their EAMs, consisting of only basic “@” and “@” operations

22

Modeling the structure

* We enumerate all possible cases of connection relationships, considering the edge

directions, between two edges and assign a 4-bit element to each case:

O ei 5() el ei ei Oé@ O}Q
oo |O—e||c—® 5 | |o —e
€j €j €j €j €j
M([i,j] = 0000 M[i,j] = 1000 M[i,j] = 0100 M([i,j] = 1100 M[i,j] = 0010 M([i,j] = 0001

CeiC

€j

M[i,j] = 0011

Rules:
« If the sources of e; and e; are connected: The first bit of M[i, j] is equal to 1
» If the targets of e; and e; are connected: The second bit of M[i, j] is equal to 1
« If the target of e; is connected to the source of e;: The third bit of M[i, j] is equal to 1
« If the source of e; is connected to the target of e;: The fourth bit of M[i, j] is equal to 1

Modeling the timing order constraints

* Decompose the query into timing-connected subquery patterns (TC-subquery patterns)
inspired by the plaintext method [Li et al., TKDE’22]

— To simplify the representation and efficient evaluation of timing order constraints

There is a strict sequential timing order relationship among all the edges
in each TC-subquery pattern, 1.e., 0 < - < gy

~Query pattern Q- Two TC-subquery patterns:

Oﬁ*@ OLO

O'1<64<02

24

Query pattern modeling and encryption

Query pattern Q Two TC-subquery patterns:

OO
St e e @

61<O'4<O'2 O'3<62

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 01 <04<0y Sl Sz S3
% A <
Modelmg '

25

Our technical design

Q

How to securely detect time-constrained matches over each
secret-shared snapshot?

26

Workflow

1. Secure matched edges fetching

— Securely fetch the matched edges for each edge in each TC-subquery pattern
* Matched edges: The edges whose labels are identical to those in the query pattern

2. Construct candidate partial matches
— Construct candidate partial matches by the edges from different matched edge sets that
obey the timing order constraints of TC-subquery pattern
3. Secure candidate partial matches filtering
— Securely filter out candidate partial matches whose structures are inconsistent with the
corresponding TC-subquery patterns, to obtain the partial matches
4. Secure partial matches compatibility checking

— Securely check the timing orders and structural compatibility among partial matches to
produce the detection result

27

Secure matched edges fetchlng

Secret-shared snapshot [Gg]

|l‘1ll‘z2t3 41,‘5 l‘66t77l‘88t99|

Time wmdow

+

{ Oblivious dummy edges

padding on the snapshot

Secret-shared matched edges

}I:{>[Secure equality test]I:{>£

Secret-shared TC-subquery pattern II(@l]]

Q.20

*61\

O "0

Reveal the
results

Directly reveal the test results?

No, leak the access pattern

28

Oblivious dummy edges padding

Challenge

Q

How to appropriately set the number of dummy edges to balance the trade-off
between efficiency and privacy?

"

Solution \¥f

S\

Draw the number from discrete Laplace distribution Lap(e, §, A) to make the leakage
about the frequency of edge labels differentially private.

Parameters

(e A=1 i
c U=- ln[(38+1€)'(1_5)] E

Issue Solution

The drawn number | Truncate it to O: :
cloud be negative max{Lap(s, §,A), 0} |

@ Refer to Section 5 of our paper for the proof of the DP guarantee o

Evaluation setup

Implementation: Python and C++

Dataset: three real-world graph datasets:
— MOOC user action (MOOC)!: 7,143 vertices and 411,749 temporal edges
— Reddit hyperlink network (Reddit)?: 55,863 vertices and 858,490 temporal edges
— com-DBLP (DBLP)3: 317,080 vertices and 1,049,866 edges

Deployment

— Cloud servers: A workstation with 24 Intel Xeon Gold 6240R CPU cores and 128 GB RAM running Ubuntu 20.04.3
LTS (latency: 10 ms)

— Front-end: a MacBook Air with 8 GB of RAM

Baseline: using the generic and popular framework MP-SPDZ [Keller et al., CCS’20]

1. https://snap.stanford.edu/data/act-mooc.html
2. https://snap.stanford.edu/data/soc- RedditHyperlinks.html
3. https://snap.stanford.edu/data/com-DBLP.html

30

https://snap.stanford.edu/data/act-mooc.html
https://snap.stanford.edu/data/soc-%20RedditHyperlinks.html
https://snap.stanford.edu/data/com-DBLP.html

Evaluation on query latency

(@) |Q| =12, W € [1x10% 5x10%]

(b) W =3x10%|Q| € [6,9,12,15,18]

* The query latency gap between GraphGuard and the baseline increases significantly as the

—_
o
o

Latency (s)

—_
o
o

Latency (s)

—_
o

e
o
T

—

--- MP-SPDZ -= GraphGuard
MOOC (a) Reddit (a) DBLP (a)
166.35 380.03
661 931212948 ,‘;;1 00F 7959 252.84 =100 F 234.64
28.89 - - oy 999
L 16.32 Py o a3 Py
s1s +45 £ 10 | 18.32 22 45 56| € 10 24.8 6.23
1.72 E 1.94 E
F0.46_ae 1 bos2 073 1 27 419
L L L L L L L L L L L 08 -I L L L
1 2 3 4 5 1 3 4 5 1 2 3 4 5
Window size W (x10%) Window size W (x10% Window size W (x10%)
MOOC (b) Reddit (b) DBLP (b)
118.31 131.1 221,14
B //.—155—5 100} 1716 /ﬁ
55.35 66.81 @ 61.09 79.59 @1 00, 9431 99.91
39.42 g 37.12 — 69.12
2 2
-9 10 B 39 9 10 i
251 ® 285 | @ 4.28
M - 16 149 8% - M
L L L L L 1 L L L L L L L L L L
6 9 12 15 18 6 9 12 15 18 6 9 12 15 18

Query pattern size QI

Query pattern size QI

Query pattern size 1QI

values of window size W and query pattern size |Q| increase

* The results clearly demonstrate that GraphGuard consistently outperforms the baseline,

achieving a substantial speedup ranging from 29 x to 60 x

31

Evaluation on the server-side communication cost

-o- MP-SPDZ

MOOC (a)

—

—
o
T L]
)
N
o
B
-
N
i)
o
@
@
o
S
@
o
®,
2

—

o
—
=}
i
a

Communication cost (GB)
¢ w
3
Communication cost (GB)

(@) |Q| =12, W € [1x10% 5x10%]

i 1 2 3 4 5
(b) W =3x10%|Q| € [6,9,12,15,18] |

Window size W (x10%)

Query pattern size 1QI

o
N

Q,

—_

Reddit (a)

- 83.08
113.17
76.35
45.45

20.78

1 2 3 4 5
Window size W (x10%)

Query pattern size QI

(GB)
2

—
o
N

Communication cost
—
o

-= GraphGuard

DBLP (a)

1030.95

889.14
615.85

340.97
114.30

R 17.43 21.48
12.08
35757,

1 2 3 4 5
Window size W (x10%)

& MOOC (b)) Reddit (b)) DBLP (b)

[0} C102F G10°%F 75555,]
§ 101 00 1398 e ’ § 57.10%6%1 70 § 340.100718 o

C C C

2 2 4 2107

S g10 S

c 1' 0.62 c c

£ %W g wy__iﬁﬂ__zfz g |08 1076 1208 12781350

| 5 —a—a—=N

g 1 1 1 1 1 g 1 1 1 1 1 g10 1 1 1 1 1
O 6 9 12 15 18 O 6 9 12 15 18 O 6 9 12 15 18

Query pattern size QI

 Communication cost savings of GraphGuard compared to the baseline increase
significantly as the values of W and query pattern size |Q| increase

* GraphGuard consistently outperforms the baseline, achieving substantial communication
cost savings ranging from 96% to 98%

Summary

* The first framework for privacy-preserving outsourcing of time-constrained pattern
detection over streaming graphs
— Bridge insights on graph processing and lightweight cryptography

— Achieve secure subgraph isomorphism search on dynamic graphs

* GraphGuard substantially outperforms the baseline constructed by the generic MPC
framework

— 60x improvement in query latency and up to 98% savings in communication

e Directions for future work:

— The support for malicious security

— The support for vertex/edge deletion

33

Thank You!
Q&A?

—i songlei.wang@outlook.com

34

