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Streaming graphs 

• Streaming graphs: vertices and edges change over time

• Widely seen in many practical applications

2Social media Financial networks Computer networks



Storing and querying graphs in the cloud is popular

• Harness the benefits of cloud computing like cost efficiency, scalability, 
ubiqiutous access, etc.
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Concerns on data privacy

• Streaming graphs contain rich information 
− Might be privacy-sensitive (e.g., personal 

connections) or proprietary to the graph owner 

• Cloud data breaches happen from time to time
− E.g., 39% of businesses faced a cloud 

environment data breach last year 
[2023 Thales Cloud Security Report]

4[2023 Thales Cloud Security Report]https://cpl.thalesgroup.com/about-us/newsroom/2023-cloud-security-cyberattacks-data-breaches-press-release
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Essential to secure the outsourced streaming graphs and queries!



Our focus: time-constrained graph pattern detection  

• Aim: continuously detect subgraphs that match a given query pattern
− Important for applications like credit card fraud detection [Qiu et al., VLDB’18] and 

cyber-attack detection [Choudhury et al., EDBT’15]

• What makes a “match”?
− Structure is matched, i.e., isomorphism
− The labels of edges are matched
− Edge timing order matching, i.e., edge occurrence orders adhere to the timing order 

constraints specified by the query pattern
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Example of time-constrained graph pattern detection 
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A streaming graph 𝔾 = {𝑒!}!∈[$], where 𝑒! = (𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!)
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Example of time-constrained graph pattern detection 
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A streaming graph 𝔾 = {𝑒!}!∈[$], where 𝑒! = (𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!)
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Example of time-constrained graph pattern detection 
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A streaming graph 𝔾 = {𝑒!}!∈[$], where 𝑒! = (𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!)
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Example of time-constrained graph pattern detection 
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Example of time-constrained graph pattern detection 
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Related works on privacy-aware graph query processing

• Mainly focus on privately querying static graphs
− Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD’23]

− Private shortest path search [Ghosh et al., AsiaCCS’21]

− Private breadth-first search [Araki et al., CCS’21]

Shortest path search Breadth-first search 
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Subgraph matching 
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Subgraph matching 

No prior work on privacy-preserving time-constrained 
pattern detection over streaming graphs.



Our research effort: GraphGuard

• The first framework for privacy-preserving outsourcing of time-
constrained pattern detection over streaming graphs

− Protect the confidentiality of edge/vertex labels and the connections between
vertices in the streaming graph and query patterns
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System architecture of GraphGuard
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Regulator
7. Detection result

1. Query pattern

4. Encrypted
  edges

Users

5. Secure time-constrained 
pattern detection over the 

secret-shared streaming graph
S1

S3

S2

Front-end

3. Edges

2. Encrypted
   query pattern

6. Encrypted
   detection result

Untrusted domain

Assumption: semi-honest and 
non-colluding cloud servers 
(same as prior security designs 
[Bell et al., CCS’22 ], [Tan et al., 
S&P’21 ], [Wang et al., VLDB’22])
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Security guarantees

16

*

*
e1*

*

*
* e2

*

*
* e3

*

*
* e4

*

*
* e5

*

*
* e6

*

*
* e7

*

*
* e8

*

*
* e9

*

*
* e10

t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5 t6 = 6 t7 = 7 t8 = 8 t9 = 9 t10 = 10

• Protect each edge’s label
• Hide the connections between the vertices
• Public info: timestamps

Protected streaming graph

*
*

*

σσ4
*

σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2σ1 ≺ σ4 ≺ σ2; σ3 ≺ σ2

σσ3
σσ2

σσ1

* * *

Protected query pattern

• Protect each edge’s label
• Hide the connections between the vertices
• Hide the timing order constraints between
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During the online detection process: Hide the search access patterns 



Cryptographic tool: Replicated Secret Sharing
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• Can be used to protect secret values
• Given the RSSs of two secret values, we can securely perform: 

üAddition/subtraction (only local processing needed)
üMultiplication (need one communication round)

Note: Denote the RSS of 𝑥 by 𝑥



Our technical design
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How to protect the streaming graph? 



Streaming graph encryption
• GraphGuard processes each edge independently, facilitating subsequent dynamic updates

− Each edge is modeled as a tuple 𝑒! = 𝑠𝑖𝑑!, 𝑒𝑖𝑑!, 𝑙!, 𝑡!
• GraphGuard uses RSS to protect the private values, including 𝑠𝑖𝑑! , 𝑒𝑖𝑑! , 𝑙!

− GraphGuard encodes each private value into a one-hot vector, and encrypts each bit via RSS
• For ensuring efficient equality test in the secret sharing domain

19

s i dxs i dx

ei dxei dx

lxlx exex

txtx
A new generated edge

Modeling
𝑒% = (𝑠𝑖𝑑% , 𝑒𝑖𝑑% , 𝑙% , 𝑡%)

One-hot encoding

𝑒% = (𝒔𝒊𝒅% , 𝒆𝒊𝒅% , 𝒍% , 𝑡%)
RSS

𝑒% = ( 𝒔𝒊𝒅% , 𝒆𝒊𝒅% , 𝒍% , 𝑡%)

S1

The secret-shared streaming graph 𝔾 = 𝑒% %∈[(]

S2 S3

• 𝑠𝑖𝑑!: The ID of the 
source of edge 𝑒!

• 𝑒𝑖𝑑!: The ID of the 
target of edge 𝑒!

• 𝑙!: 𝑒!’s label
• 𝑡!: 𝑒!’s timestamp



Our technical design
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How to protect the query pattern? 



Query pattern modeling

21

• It is easy to model the labels of the query pattern
− ℒ = 𝑙", 𝑙#, ⋯

• How to model the structure?
− Goal: Facilitate efficient graph isomorphism checking in the secret sharing domain

• How to model timing order constraints?
− Goal: Facilitate edge temporal consistency checking in the secret sharing domain
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Modeling the structure

• To check graph isomorphism, a common strategy is to find the bijective
match function by constructing the search tree along the connections
between vertices

− Difficult to realize in the secret sharing domain

• Therefore, we propose a new data structure - endpoint adjacency matrix
(EAM) - to model vertex connections

− With EAM, checking graph isomorphism can be simplified as the comparison
between their EAMs, consisting of only basic “⊕” and “⊗” operations

22



Modeling the structure
• We enumerate all possible cases of connection  relationships, considering the edge 

directions, between two edges and assign a 4-bit element to each case:
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Rules:
• If the sources of 𝑒* and 𝑒+ are connected: The first bit of 𝐌 𝑖, 𝑗 is equal to 1
• If the targets of 𝑒* and 𝑒+ are connected: The second bit of 𝐌 𝑖, 𝑗 is equal to 1
• If the target of 𝑒* is connected to the source of 𝑒+: The third bit of 𝐌 𝑖, 𝑗 is equal to 1
• If the source of 𝑒* is connected to the target of 𝑒+: The fourth bit of 𝐌 𝑖, 𝑗 is equal to 1



Modeling the timing order constraints

• Decompose the query into timing-connected subquery patterns (TC-subquery patterns) 
inspired by the plaintext method [Li et al., TKDE’22]

− To simplify the representation and efficient evaluation of timing order constraints
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There is a strict sequential timing order relationship among all the edges 
in each TC-subquery pattern, i.e., 𝜎( ≺ ⋯ ≺ 𝜎)

Query pattern Q
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Example:



Query pattern modeling and encryption

25

Query pattern Q
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Our technical design
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How to securely detect time-constrained matches over each 
secret-shared snapshot?  



Workflow

1. Secure matched edges fetching
− Securely fetch the matched edges for each edge in each TC-subquery pattern

• Matched edges: The edges whose labels are identical to those in the query pattern

2. Construct candidate partial matches
− Construct candidate partial matches by the edges from different matched edge sets that

obey the timing order constraints of TC-subquery pattern

3. Secure candidate partial matches filtering
− Securely filter out candidate partial matches whose structures are inconsistent with the

corresponding TC-subquery patterns, to obtain the partial matches

4. Secure partial matches compatibility checking
− Securely check the timing orders and structural compatibility among partial matches to

produce the detection result
27



Secure matched edges fetching
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Oblivious dummy edges padding
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How to appropriately set the number of dummy edges to balance the trade-off
between efficiency and privacy?

Challenge

Draw the number from discrete Laplace distribution 𝐿𝑎𝑝 𝜀, 𝛿, Δ to make the leakage
about the frequency of edge labels differentially private.

Solution

The drawn number
cloud be negative

Issue

Truncate it to 0: 
max 𝐿𝑎𝑝 𝜀, 𝛿, Δ , 0

Solution

• Δ = 1
• 𝜇 = − *+ ,--( .((01)

3

Parameters 

Refer to Section 5 of our paper for the proof of the DP guarantee



Evaluation setup
• Implementation: Python and C++

• Dataset: three real-world graph datasets:
− MOOC user action (MOOC)1: 7,143 vertices and 411,749 temporal edges

− Reddit hyperlink network (Reddit)2: 55,863 vertices and 858,490 temporal edges

− com-DBLP (DBLP)3: 317,080 vertices and 1,049,866 edges

• Deployment

− Cloud servers: A workstation with 24 Intel Xeon Gold 6240R CPU cores and 128 GB RAM running Ubuntu 20.04.3
LTS (latency: 10 ms)

− Front-end: a MacBook Air with 8 GB of RAM

• Baseline: using the generic and popular framework MP-SPDZ [Keller et al., CCS’20]

1. https://snap.stanford.edu/data/act-mooc.html
2. https://snap.stanford.edu/data/soc- RedditHyperlinks.html
3. https://snap.stanford.edu/data/com-DBLP.html 30
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Evaluation on query latency
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• The query latency gap between GraphGuard and the baseline increases significantly as the
values of window size 𝑊 and query pattern size ℚ increase
• The results clearly demonstrate that GraphGuard consistently outperforms the baseline,

achieving a substantial speedup ranging from 29× to 60×

(a) ℚ = 12, W ∈ 1×10!, 5×10!
(b) W = 3×10!, ℚ ∈ [6,9,12,15,18]



Evaluation on the server-side communication cost
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• Communication cost savings of GraphGuard compared to the baseline increase
significantly as the values of 𝑊 and query pattern size ℚ increase
• GraphGuard consistently outperforms the baseline, achieving substantial communication

cost savings ranging from 96% to 98%

(a) ℚ = 12, W ∈ 1×10!, 5×10!
(b) W = 3×10!, ℚ ∈ [6,9,12,15,18]



Summary

• The first framework for privacy-preserving outsourcing of time-constrained pattern
detection over streaming graphs

− Bridge insights on graph processing and lightweight cryptography

− Achieve secure subgraph isomorphism search on dynamic graphs

• GraphGuard substantially outperforms the baseline constructed by the generic MPC
framework

− 60× improvement in query latency and up to 98% savings in communication

• Directions for future work:
− The support for malicious security

− The support for vertex/edge deletion
33
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Q&A?

songlei.wang@outlook.com


