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Streaming graphs

* Streaming graphs: vertices and edges change over time
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Storing and querying graphs in the cloud is popular

* Harness the benefits of cloud computing like cost efficiency, scalability,
ubiqiutous access, etc.

“ AWS is cost-efficient and helps us deliver
products earlier without purchasing
physical hardware.”
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Airbnb on AWS

Founded in 2008, San Francisco-based Airbnb is a community
marketplace with over 7 million accommodations and more than
40,000 unique Experiences for customers to book on the company’s
website or through its iOS and Android applications.

Customer Stories | Architecture | Additional Resources




Concerns on data privacy

* Streaming graphs contain rich information

— Might be privacy-sensitive (e.g., personal
connections) or proprietary to the graph owner

* Cloud data breaches happen from time to time

—E.g., 39% of businesses faced a cloud
environment data breach last year
[2023 Thales Cloud Security Report]




Concerns on data privacy

* Streaming graphs contain rich information

— Might be privacy-sensitive (e.g., personal
connections) or proprietary to the graph owner

* Cloud data breaches happen from time to time

—E.g., 39% of businesses faced a cloud
environment data breach last year
[2023 Thales Cloud Security Report]

Essential to secure the outsourced streaming graphs and queries!




Our focus: time-constrained graph pattern detection

* Aim: continuously detect subgraphs that match a given query pattern

— Important for applications like credit card fraud detection [Qiu et al., VLDB’18] and
cyber-attack detection [Choudhury et al., EDBT 15]

 What makes a “match”?

— Structure 1s matched, 1.e., Isomorphism
— The labels of edges are matched

— Edge timing order matching, 1.e., edge occurrence orders adhere to the timing order
constraints specified by the query pattern



Example of time-constrained graph pattern detection

Indicate the connection Endpomts sid, ]
relationships between edges
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A streaming graph G = {ey}xe[x), where ey = (sidy, eidy, ly, ty)



Example of time-constrained graph pattern detection

Indicate the type of connection between two vertices
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A streaming graph G = {ey}xe[x), where ey = (sidy, eidy, [y, ty)



Example of time-constrained graph pattern detection
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Tlmestamps Ly ]

A streaming graph G = {ey}xe[x), where ey = (sidy, eidy, [y, ty)



Example of time-constrained graph pattern detection

4 e, appears at timestamp
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Example of time-constrained graph pattern detection

4 e, appears at timestamp
“1” and 1s an edge with
label “005” that connects -61 002)e2 | 2les [00D|es -85 005les [006)e7 [003)es [00Dley [007(€10e o o
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A time-constrained
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Related works on privacy-aware graph query processing

* Mainly focus on privately querying static graphs
— Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD’23]
— Private shortest path search [Ghosh et al., AsiaCCS21]
— Private breadth-first search [Araki et al., CCS’21]
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Subgraph matching Shortest path search Breadth-first search
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No prior work on privacy-preserving time-constrained
pattern detection over streaming graphs.



Our research effort: GraphGuard

* The first framework for privacy-preserving outsourcing of time-
constrained pattern detection over streaming graphs

—Protect the confidentiality of edge/vertex labels and the connections between
vertices 1n the streaming graph and query patterns

14



System architecture of GraphGuard

Untrusted domain
< >
g 5. Secure time-constrained g

S pattern detection over the S
secret-shared streaming graph
S3
4. Encrypted 2. Encrypted 6. Encrypted
edges query pattern detection result

'ﬁ‘“. m 3. Edges E]: 1. Query pattern - %

7. Detection result
Users Front-end Regulator

Untrusted domain

Assumption: semi-honest and
non-colluding cloud servers
(same as prior security designs
[Bell et al., CCS’22 ], [Tan et al.,
S&P’21 ], [Wang et al., VLDB’22])

Trusted domain
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Security guarantees
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Protected streaming graph Protected query pattern
* Protect each edge’s label * Protect each edge’s label
* Hide the connections between the vertices » Hide the connections between the vertices
* Public info: timestamps * Hide the timing order constraints between

each pair of edges

During the online detection process: Hide the search access patterns
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Cryptographic tool: Replicated Secret Sharing

Note: Denote the RSS of x by [[x] ((x)1, (x)2)

/-[ (x)1 =1 €EZy
[xEZzz ]—H (X), =1, €EZ, }
\—[(x)g, =x—-1n-—-1n€Z,u ]

* Can be used to protect secret values

((x)2,(x)3)

((x)3,(x)1)

* Given the RSSs of two secret values, we can securely perform:
v" Addition/subtraction (only local processing needed)

v Multiplication (need one communication round)
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Our technical design

Q

How to protect the streaming graph?
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* [,:e,’s label L

Streaming graph encryption

* GraphGuard processes each edge independently, facilitating subsequent dynamic updates

— Each edge is modeled as a tuple e,, = (sid,, eid,, L, t,)

* GraphGuard uses RSS to protect the private values, including sid,., eid,., L,
— GraphGuard encodes each private value into a one-hot vector, and encrypts each bit via RSS

* For ensuring efficient equality test in the secret sharing domain

sid,: The ID of the
source of edge e,

eid,,: The ID of the @ I One-hot encoding
target of edge e,

¢. Modeling

o) o, = (sid,,eid,, [, t,)

"

I

t,: e,’s timestamp

A new generated edge

RSS | : :
ex = (Sidxr eidx; lx; tx) — [[ex]] = ([[Sldx]]r [[eldx]]) [[lx]]; tx)

* ] *

n
0‘ = ‘0

The secret-shared streaming graph [G] = {[[ex]]}xe[x]

19



Our technical design

Q

How to protect the query pattern?
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Query pattern modeling

* It 1s easy to model the labels of the query pattern
- L= {ll; l21 }
* How to model the structure?

— Goal: Facilitate efficient graph isomorphism checking in the secret sharing domain

* How to model timing order constraints?

— Goal: Facilitate edge temporal consistency checking in the secret sharing domain

01 <04 < 05,03 <0y | > 6| < 04 < 65,03 < Oy
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Modeling the structure

* To check graph 1somorphism, a common strategy 1s to find the bijective
match function by constructing the search tree along the connections
between vertices

— Difficult to realize 1n the secret sharing domain

* Therefore, we propose a new data structure - endpoint adjacency matrix
(EAM) - to model vertex connections

— With EAM, checking graph isomorphism can be simplified as the comparison
between their EAMs, consisting of only basic “@” and “@” operations
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Modeling the structure

* We enumerate all possible cases of connection relationships, considering the edge

directions, between two edges and assign a 4-bit element to each case:

O ei 5( ) el ei ei Oé@ O}Q
oo |O—e||c—® 5 | |o —e
€j €j €j €j €j
M([i,j] = 0000 M[i,j] = 1000 M[i,j] = 0100 M([i,j] = 1100 M[i,j] = 0010 M([i,j] = 0001

CeiC

€j

M[i,j] = 0011

Rules:
« If the sources of e; and e; are connected: The first bit of M[i, j] is equal to 1
» If the targets of e; and e; are connected: The second bit of M[i, j] is equal to 1
« If the target of e; is connected to the source of e;: The third bit of M[i, j] is equal to 1
« If the source of e; is connected to the target of e;: The fourth bit of M[i, j] is equal to 1




Modeling the timing order constraints

* Decompose the query into timing-connected subquery patterns (TC-subquery patterns)
inspired by the plaintext method [Li et al., TKDE’22]

— To simplify the representation and efficient evaluation of timing order constraints

There is a strict sequential timing order relationship among all the edges
in each TC-subquery pattern, 1.e., 0 < - < gy

~Query pattern Q- Two TC-subquery patterns:

Oﬁ*@ OLO

O'1<64<02
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Query pattern modeling and encryption

Query pattern Q Two TC-subquery patterns:

OO
St e e @

61<O'4<O'2 O'3<62
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% A <
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Our technical design

Q

How to securely detect time-constrained matches over each
secret-shared snapshot?
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Workflow

1. Secure matched edges fetching

— Securely fetch the matched edges for each edge in each TC-subquery pattern
* Matched edges: The edges whose labels are identical to those in the query pattern

2. Construct candidate partial matches
— Construct candidate partial matches by the edges from different matched edge sets that
obey the timing order constraints of TC-subquery pattern
3. Secure candidate partial matches filtering
— Securely filter out candidate partial matches whose structures are inconsistent with the
corresponding TC-subquery patterns, to obtain the partial matches
4. Secure partial matches compatibility checking

— Securely check the timing orders and structural compatibility among partial matches to
produce the detection result
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Secure matched edges fetchlng

Secret-shared snapshot [Gg ]

|l‘1ll‘z2t3 41,‘5 l‘66t77l‘88t99|

Time wmdow

+

{ Oblivious dummy edges

padding on the snapshot

Secret-shared matched edges

}I:{>[ Secure equality test ]I:{>£

Secret-shared TC-subquery pattern II(@l]]

Q.20

*61\

O "0

Reveal the
results

Directly reveal the test results?

No, leak the access pattern
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Oblivious dummy edges padding

Challenge

Q

How to appropriately set the number of dummy edges to balance the trade-off
between efficiency and privacy?

"

Solution \¥f

S\

Draw the number from discrete Laplace distribution Lap(e, §, A) to make the leakage
about the frequency of edge labels differentially private.

Parameters

(e A=1 i
c U=- ln[(38+1€)'(1_5)] E

Issue Solution

The drawn number | Truncate it to O: :
cloud be negative max{Lap(s, §,A), 0} |

@ Refer to Section 5 of our paper for the proof of the DP guarantee o




Evaluation setup

Implementation: Python and C++

Dataset: three real-world graph datasets:
— MOOC user action (MOOC)!: 7,143 vertices and 411,749 temporal edges
— Reddit hyperlink network (Reddit)?: 55,863 vertices and 858,490 temporal edges
— com-DBLP (DBLP)3: 317,080 vertices and 1,049,866 edges

Deployment

— Cloud servers: A workstation with 24 Intel Xeon Gold 6240R CPU cores and 128 GB RAM running Ubuntu 20.04.3
LTS (latency: 10 ms)

— Front-end: a MacBook Air with 8 GB of RAM

Baseline: using the generic and popular framework MP-SPDZ [Keller et al., CCS’20]

1. https://snap.stanford.edu/data/act-mooc.html
2. https://snap.stanford.edu/data/soc- RedditHyperlinks.html
3. https://snap.stanford.edu/data/com-DBLP.html
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Evaluation on query latency

(@) |Q| =12, W € [1x10% 5x10%]

(b) W =3x10%|Q| € [6,9,12,15,18]

* The query latency gap between GraphGuard and the baseline increases significantly as the
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Query pattern size QI

Query pattern size QI

Query pattern size 1QI

values of window size W and query pattern size |Q| increase

* The results clearly demonstrate that GraphGuard consistently outperforms the baseline,

achieving a substantial speedup ranging from 29 x to 60 x
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Evaluation on the server-side communication cost
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 Communication cost savings of GraphGuard compared to the baseline increase
significantly as the values of W and query pattern size |Q| increase

* GraphGuard consistently outperforms the baseline, achieving substantial communication
cost savings ranging from 96% to 98%



Summary

* The first framework for privacy-preserving outsourcing of time-constrained pattern
detection over streaming graphs
— Bridge insights on graph processing and lightweight cryptography

— Achieve secure subgraph isomorphism search on dynamic graphs

* GraphGuard substantially outperforms the baseline constructed by the generic MPC
framework

— 60x improvement in query latency and up to 98% savings in communication

e Directions for future work:

— The support for malicious security

— The support for vertex/edge deletion
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Thank You!
Q&A?

—i songlei.wang@outlook.com
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