33rd USENIX Security Symposium

GraphGuard: Private Time-Constrained Pattern Detection Over Streaming Graphs in the Cloud

Songlei Wang Yifeng Zheng Xiaohua Jia

Yifeng Zheng

Streaming graphs

• Streaming graphs: vertices and edges change over time

• Widely seen in many practical applications

Social media and Social media Research 2 Computer networks 2

Storing and querying graphs in the cloud is popular

• Harness the benefits of cloud computing like cost efficiency, scalability, ubiqiutous access, etc.

\Diamond airbnb

Airbnb on AWS

Founded in 2008, San Francisco-based Airbnb is a community marketplace with over 7 million accommodations and more than 40,000 unique Experiences for customers to book on the company's website or through its iOS and Android applications.

Customer Stories | Architecture | Additional Resources

" AWS is cost-efficient and helps us deliver products earlier without purchasing physical hardware."

Jui-Nan Lin Team Lead of R&D Dept, PIXNET

Concerns on data privacy

- Streaming graphs contain rich information
	- − Might be privacy-sensitive (e.g., personal connections) or proprietary to the graph owner
- Cloud data breaches happen from time to time − E.g., 39% of businesses faced a cloud environment data breach last year

[2023 Thales Cloud Security Report]

Concerns on data privacy

- Streaming graphs contain rich information
	- − Might be privacy-sensitive (e.g., personal connections) or proprietary to the graph owner
- Cloud data breaches happen from time to time
	- − E.g., 39% of businesses faced a cloud environment data breach last year [2023 Thales Cloud Security Report]

Essential to secure the outsourced streaming graphs and queries!

Our focus: time-constrained graph pattern detection

- Aim: continuously detect subgraphs that match a given query pattern
	- − Important for applications like credit card fraud detection [Qiu et al., VLDB'18] and cyber-attack detection [Choudhury et al., EDBT'15]
- What makes a "match"?
	- − Structure is matched, i.e., isomorphism
	- − The labels of edges are matched
	- − Edge timing order matching, i.e., edge occurrence orders adhere to the timing order constraints specified by the query pattern

A streaming graph $\mathbb{G} = \{e_x\}_{x \in [X]}$, where $e_x = (sid_x, ed_x, l_x, t_x)$

Indicate the type of connection between two vertices

 \mathbf{I}

Labels l_x	005	0	0	0	0	0	0	0										
l_x	005	002	002	003	003	004	004	005	005	006	006	003	08	001	09	007	003	008
$l_1 = 1$	$l_2 = 2$	$l_3 = 3$	04	04	05	005	06	006	07	003	08	001	09	007	010	008		

A streaming graph $\mathbb{G} = \{e_x\}_{x \in [X]}$, where $e_x = (sid_x, ed_x, l_x, l_x, l_x)$

A streaming graph $\mathbb{G} = \{e_x\}_{x \in [X]}$, where $e_x = (sid_x, el_x, l_x, l_x)$

 e_1 appears at timestamp ""1" and is an edge with label "005" that connects the vertex with ID "7" to the vertex with ID "8"

Related works on privacy-aware graph query processing

- Mainly focus on privately querying static graphs
	- − Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD'23]
	- − Private shortest path search [Ghosh et al., AsiaCCS'21]
	- − Private breadth-first search [Araki et al., CCS'21]

Subgraph matching

Shortest path search Breadth-first search

Related works on privacy-aware graph query processing

- Mainly focus on privately querying static graphs
	- − Private subgraph matching (without timing order constraints) [Xu et al., SIGMOD'23]
	- − Private shortest path search [Ghosh et al., AsiaCCS'21]

− Private breadth-first search (Araki et al., CCS)

No prior work on privacy-preserving time-constrained pattern detection over streaming graphs.

Subgraph matching

Shortest path search Breadth-first search

Our research effort: GraphGuard

- The first framework for privacy-preserving outsourcing of timeconstrained pattern detection over streaming graphs
	- − Protect the confidentiality of edge/vertex labels and the connections between vertices in the streaming graph and query patterns

System architecture of GraphGuard

Untrusted domain

Assumption: semi-honest and non-colluding cloud servers (same as prior security designs [Bell et al., CCS'22], [Tan et al., S&P'21], [Wang et al., VLDB'22])

Trusted domain

Security guarantees

Protected query pattern

- Protect each edge's **label**
- Hide the **connections** between the vertices
- Hide the **timing order constraints between each pair of edges**

During the online detection process: Hide the search access patterns

Cryptographic tool: Replicated Secret Sharing

Note: Denote the RSS of x by $\llbracket x \rrbracket$ $(\langle x \rangle_1, \langle x \rangle_2)$ $S₁$ $\langle x \rangle_1 = r_1 \in Z_{2^l}$ $x \in Z_{2^l}$ $\langle x \rangle_2 = r_2 \in Z_{2^l}$ $(\langle x \rangle_2, \langle x \rangle_3)$ S_2 $\langle x \rangle_3 = x - r_1 - r_2 \in Z_{2^l}$ $(\langle x \rangle_3, \langle x \rangle_1)$

- Can be used to protect secret values
- Given the RSSs of two secret values, we can securely perform:
	- \checkmark Addition/subtraction (only local processing needed)
	- \checkmark Multiplication (need one communication round)

 $S₃$

Our technical design

How to protect the streaming graph?

Streaming graph encryption

- GraphGuard processes each edge independently, facilitating subsequent dynamic updates
	- $-$ Each edge is modeled as a tuple $e_x = (sid_x, el_x, l_x, t_x)$
- GraphGuard uses RSS to protect the private values, including sid_x, el_x, l_x
	- − GraphGuard encodes each private value into a one-hot vector, and encrypts each bit via RSS
		- For ensuring efficient equality test in the secret sharing domain

Our technical design

How to protect the query pattern?

Query pattern modeling

- It is easy to model the labels of the query pattern $-\mathcal{L} = \{l_1, l_2, \dots\}$
- How to model the structure?
	- − **Goal:** Facilitate efficient graph isomorphism checking in the secret sharing domain
- How to model timing order constraints?
	- − **Goal:** Facilitate edge temporal consistency checking in the secret sharing domain

Modeling the structure

• To check graph isomorphism, a common strategy is to find the bijective match function by constructing the search tree along the connections between vertices

− Difficult to realize in the secret sharing domain

- Therefore, we propose a new data structure endpoint adjacency matrix (EAM) - to model vertex connections
	- − With EAM, checking graph isomorphism can be simplified as the comparison between their EAMs, consisting of only basic "⊕" and "⊗" operations

Modeling the structure

• We enumerate all possible cases of connection relationships, considering the edge directions, between two edges and assign a 4-bit element to each case:

Rules:

- If the sources of e_i and e_j are connected: The first bit of $M[i, j]$ is equal to 1
- If the targets of e_i and e_j are connected: The second bit of $M[i, j]$ is equal to 1
- If the target of e_i is connected to the source of e_i : The third bit of $M[i, j]$ is equal to 1
- If the source of e_i is connected to the target of e_i : The fourth bit of $M[i, j]$ is equal to 1

Modeling the timing order constraints

- Decompose the query into timing-connected subquery patterns (TC-subquery patterns) inspired by the plaintext method [Li et al., TKDE'22]
	- − To simplify the representation and efficient evaluation of timing order constraints

There is a strict sequential timing order relationship among all the edges in each TC-subquery pattern, i.e., $\sigma_1 \prec \cdots \prec \sigma_{\kappa}$

Query pattern modeling and encryption

Our technical design

How to securely detect time-constrained matches over each secret-shared snapshot?

Workflow

- 1. Secure matched edges fetching
	- − Securely fetch the matched edges for each edge in each TC-subquery pattern
		- Matched edges: The edges whose labels are identical to those in the query pattern
- 2. Construct candidate partial matches
	- − Construct candidate partial matches by the edges from different matched edge sets that obey the timing order constraints of TC-subquery pattern
- 3. Secure candidate partial matches filtering
	- − Securely filter out candidate partial matches whose structures are inconsistent with the corresponding TC-subquery patterns, to obtain the partial matches
- 4. Secure partial matches compatibility checking
	- − Securely check the timing orders and structural compatibility among partial matches to produce the detection result

Secure matched edges fetching

Oblivious dummy edges padding

Challenge

How to appropriately set the number of dummy edges to balance the trade-off between efficiency and privacy?

Solution

Draw the number from discrete Laplace distribution $Lap(\varepsilon, \delta, \Delta)$ to make the leakage about the frequency of edge labels differentially private.

Refer to Section 5 of our paper for the proof of the DP guarantee

Evaluation setup

- Implementation: Python and C++
- Dataset: three real-world graph datasets:
	- − MOOC user action (MOOC)1: 7,143 vertices and 411,749 temporal edges
	- − Reddit [hyperlink](https://snap.stanford.edu/data/act-mooc.html) network (Reddit)²: 55,863 vertices and 858,490 temporal
	- − [com-DBLP](https://snap.stanford.edu/data/soc-%20RedditHyperlinks.html) (DBLP)3: 317,080 vertices and 1,049,866 edges
- Deployment
	- − Cloud servers: A workstation with 24 Intel Xeon Gold 6240R CPU cores LTS (latency: 10 ms)
	- − Front-end: a MacBook Air with 8 GB of RAM
- Baseline: using the generic and popular framework MP-SPDZ [Kell

^{1.} https://snap.stanford.edu/data/act-mooc.html

^{2.} https://snap.stanford.edu/data/soc- RedditHyperlinks.html

^{3.} https://snap.stanford.edu/data/com-DBLP.html

Evaluation on query latency

- The query latency gap between GraphGuard and the baseline increases significantly as the values of window size *W* and query pattern size $|Q|$ increase
- The results clearly demonstrate that GraphGuard consistently outperforms the baseline, achieving a substantial speedup ranging from $29 \times$ to $60 \times$

Evaluation on the server-side communication cost

- Communication cost savings of GraphGuard compared to the baseline increase significantly as the values of W and query pattern size $|Q|$ increase
- GraphGuard consistently outperforms the baseline, achieving substantial communication cost savings ranging from 96% to 98%

- The first framework for privacy-preserving outsourcing of time-constrained pattern detection over streaming graphs
	- − Bridge insights on graph processing and lightweight cryptography
	- − Achieve secure subgraph isomorphism search on dynamic graphs
- GraphGuard substantially outperforms the baseline constructed by the generic MPC framework
	- − 60× improvement in query latency and up to 98% savings in communication
- Directions for future work:
	- − The support for malicious security
	- − The support for vertex/edge deletion

Thank You! Q&A?

