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DMA Attack

• DMA allows devices to read/write the memory.
• Fire Wire
• Thunderbolt
• PCIe
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DMA Attack

• DMA allows devices to read/write the memory.
• Fire Wire
• Thunderbolt
• PCIe

• Threat: devices can control the entire system by corrupting the memory.
• Owned by an iPod (2005)
• Over the Air (2017)
• TiYunZong (2019)
• Thunderclap (2019)
• Make KSMA Great Again (2023)
• The Way to Android Root (2024)
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Defense: IOMMU

• Traditional systems use MMU to virtualize the address space for user 
space programs and restrict memory accesses from user space.
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Defense: IOMMU

• IOMMU maps Physical Addresses to Input Output Virtual 
addresses, restricting memory regions accessed by devices.
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Vulnerabilities

• Spatial Vulnerability
• DMA buffers are not always

multi-page sized.
• Pages mapped for devices may 

contain other sensitive data.
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Vulnerabilities

• Spatial Vulnerability
• DMA buffers are not always

multi-page sized.
• Pages mapped for devices may 

contain other sensitive data.
• Temporal Vulnerability

• IOTLB invalidation is deferred
to reach acceptable overhead.

• Devices can access unmapped
memory in the deferred window.
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Motivation

• Contemporary IOMMU cannot effectively defeat elaborate DMA 
attacks exploiting spatial and temporal vulnerabilities. 

• There needs to be a solution with
• Strong spatial and temporal security guarantees
• Transparency to existing hardware
• Compatibility with existing device drivers
• Small throughput overhead
• Low CPU time consumption
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Characterization: Access Pattern

• Most (75.2%) DMAs are not using the original pointers, but with an 
offset added to the pointer (pointer arithmetic). 

• The number of coexisting DMA buffers is limited.
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Characterization: Mapping Size

• Most (69.8%) of the DMA buffers are not multi-page sized and have 
potential spatial vulnerability.

11



Design

• DMA Pointer 
Authentication

• Keeps the key in CPU
• Lets kernel fully 

control DMA pointers.
• Bound Checking

• Records fine-grained 
bound information

• Prevents all the out-
of-bound DMAs
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Design

① Kernel allocates a object, 
which has a I/O buffer. 
But the rest of the object 
or the page shouldn’t be 
accessed by DMA.
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Design

① Kernel allocates a object, 
which has a I/O buffer. 
But the rest of the object 
or the page shouldn’t be 
accessed by DMA.

② Kernel maps the buffer 
to the device explicitly a 
to get the DMA pointer.
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Design

① Kernel allocates a object, 
which has a I/O buffer. 
But the rest of the object 
or the page shouldn’t be 
accessed by DMA.

② Kernel maps the buffer to 
the device explicitly a to 
get the DMA pointer.

③ Metadata of the mapped 
I/O buffer is generated.
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Design

④ Kernel signs the DMA 
pointer with the 
corresponding metadata.
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Design

④ Kernel signs the DMA 
pointer with the 
corresponding metadata.

⑤ Metadata is stored in the 
hardware authenticator 
to be referenced when 
authenticating the 
corresponding pointer.
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Design

⑥ When peripherals use 
the signed pointers to 
perform DMA, the 
authenticator hardware 
on I/O bus fetches the 
corresponding metadata 
to check bounds and 
perform authentication.
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Design

⑥ When peripherals use 
the signed pointers to 
perform DMA, the 
authenticator hardware 
on I/O bus fetches the 
corresponding metadata 
to check bounds and 
perform authentication.

⑦ Only legitimate DMAs  
can access the memory.
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Solution to Pointer Arithmetic: APAC

• Arithmetic Capable Pointer Authentication signs the DMA pointer 
with only the high bits, allowing pointer arithmetic within the lower bits 
without influencing signature calculation.
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Metadata Format and Positioning

• Metadata contains the following fields:
• Read/write permission
• Length of the offset
• Random identifier
• Upper bound and Lower bound

21



Metadata Format and Positioning

• Metadata contains the following fields:
• Read/write permission
• Length of the offset
• Random identifier
• Upper bound and Lower bound

• The metadata is stored in a dedicated area and index with the signature
• Identifier defeats reuse

and temporal attacks.
• Write-only metadata

prevents the potential
metadata leakage.
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Resolving the Vulnerabilities

• Spatial Vulnerability
• Byte-granularity bound information

• Temporal Vulnerability
• Re-randomizes the Identifier
• Changes signature hash result
• Immediately invalidates outdated pointers holding the outdated signature
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Implementation

• SoC research framework 
with PCIe 3.0 x8 bus

• Customizable 
interconnection between 
PCIe bus and DRAM

• Baseline for various
hardware-software co-design

• High performance IOMMU
• 5.8% throughput overhead
• 5.6% CPU time overhead
• Comparable to IOMMUs on 

commercial SoCs
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Implementation

• The hardware authenticator is put between PCIe bus and DRAM. 
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Implementation

• The hardware authenticator is put between PCIe bus and DRAM. 
• The CPU uses MMIO to control the Authenticator on the bus.
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Implementation

• The hardware authenticator is put between PCIe bus and DRAM. 
• The CPU uses MMIO to control the Authenticator on the bus.
• The Authenticator intercepts and authenticates the DMA transactions.
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Evaluation

• DMAAUTH brings 1.0% throughput overhead, 1.8% CPU time overhead
• Significantly faster than IOMMU
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Takeaways

• DMAAUTH hardware-software co-design
• Defeats DMA attacks effectively
• Is significantly faster than IOMMU
• Is transparent to existing hardware
• Requires zero driver modification

• Arithmetic Capable Pointer Authentication 
• Supports pointer arithmetic
• Ensures pointer integrity

• PCIe-capable research framework
• Is equipped with high-performance IOMMU
• Provides customizable research platform
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Q & A
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