
DMAAUTH: A Lightweight Pointer Integrity-based
Secure Architecture to Defeat DMA Attacks

Xingkai Wang, Wenbo Shen, Yujie Bu, Jinmeng Zhou, Yajin Zhou
Zhejiang University

1

Agenda

• Motivation
• Characterization
• Design
• Implementation
• Evaluation
• Conclusion

2

DMA Attack

• DMA allows devices to read/write the memory.
• Fire Wire
• Thunderbolt
• PCIe

3

DMA Attack

• DMA allows devices to read/write the memory.
• Fire Wire
• Thunderbolt
• PCIe

• Threat: devices can control the entire system by corrupting the memory.
• Owned by an iPod (2005)
• Over the Air (2017)
• TiYunZong (2019)
• Thunderclap (2019)
• Make KSMA Great Again (2023)
• The Way to Android Root (2024)

4

Defense: IOMMU

• Traditional systems use MMU to virtualize the address space for user
space programs and restrict memory accesses from user space.

5

Main Memory

CPUDevice

MMU
Virtual Address

Physical Address

Physical Address

Defense: IOMMU

• IOMMU maps Physical Addresses to Input Output Virtual
addresses, restricting memory regions accessed by devices.

6

Main Memory

CPUDevice

MMU
Virtual Address

Physical Address

Physical Address

Main Memory

CPUDevice

MMU
Virtual Address

Physical Address

Virtual Address
Input Output

IOMMU
Physical Address

Vulnerabilities

• Spatial Vulnerability
• DMA buffers are not always

multi-page sized.
• Pages mapped for devices may

contain other sensitive data.

7

DMA Buffer

Page

Other Kernel
Data / Pointers

Other Kernel
Data / Pointers

Vulnerabilities

• Spatial Vulnerability
• DMA buffers are not always

multi-page sized.
• Pages mapped for devices may

contain other sensitive data.
• Temporal Vulnerability

• IOTLB invalidation is deferred
to reach acceptable overhead.

• Devices can access unmapped
memory in the deferred window.

8

DMA Buffer

Page

Other Kernel
Data / Code

Other Kernel
Data / Code

Map Unmapping
IOTLB

Invalidation

Legitimate
Access

Illegal Access
via IOTLB

DMA Buffer

Page

Other Kernel
Data / Pointers

Other Kernel
Data / Pointers

Motivation

• Contemporary IOMMU cannot effectively defeat elaborate DMA
attacks exploiting spatial and temporal vulnerabilities.

• There needs to be a solution with
• Strong spatial and temporal security guarantees
• Transparency to existing hardware
• Compatibility with existing device drivers
• Small throughput overhead
• Low CPU time consumption

9

Characterization: Access Pattern

• Most (75.2%) DMAs are not using the original pointers, but with an
offset added to the pointer (pointer arithmetic).

• The number of coexisting DMA buffers is limited.

10

Characterization: Mapping Size

• Most (69.8%) of the DMA buffers are not multi-page sized and have
potential spatial vulnerability.

11

Design

• DMA Pointer
Authentication

• Keeps the key in CPU
• Lets kernel fully

control DMA pointers.
• Bound Checking

• Records fine-grained
bound information

• Prevents all the out-
of-bound DMAs

12

Design

① Kernel allocates a object,
which has a I/O buffer.
But the rest of the object
or the page shouldn’t be
accessed by DMA.

13

Design

① Kernel allocates a object,
which has a I/O buffer.
But the rest of the object
or the page shouldn’t be
accessed by DMA.

② Kernel maps the buffer
to the device explicitly a
to get the DMA pointer.

14

Design

① Kernel allocates a object,
which has a I/O buffer.
But the rest of the object
or the page shouldn’t be
accessed by DMA.

② Kernel maps the buffer to
the device explicitly a to
get the DMA pointer.

③ Metadata of the mapped
I/O buffer is generated.

15

Design

④ Kernel signs the DMA
pointer with the
corresponding metadata.

16

Design

④ Kernel signs the DMA
pointer with the
corresponding metadata.

⑤ Metadata is stored in the
hardware authenticator
to be referenced when
authenticating the
corresponding pointer.

17

Design

⑥ When peripherals use
the signed pointers to
perform DMA, the
authenticator hardware
on I/O bus fetches the
corresponding metadata
to check bounds and
perform authentication.

18

Design

⑥ When peripherals use
the signed pointers to
perform DMA, the
authenticator hardware
on I/O bus fetches the
corresponding metadata
to check bounds and
perform authentication.

⑦ Only legitimate DMAs
can access the memory.

19

Solution to Pointer Arithmetic: APAC

• Arithmetic Capable Pointer Authentication signs the DMA pointer
with only the high bits, allowing pointer arithmetic within the lower bits
without influencing signature calculation.

20

Metadata Format and Positioning

• Metadata contains the following fields:
• Read/write permission
• Length of the offset
• Random identifier
• Upper bound and Lower bound

21

Metadata Format and Positioning

• Metadata contains the following fields:
• Read/write permission
• Length of the offset
• Random identifier
• Upper bound and Lower bound

• The metadata is stored in a dedicated area and index with the signature
• Identifier defeats reuse

and temporal attacks.
• Write-only metadata

prevents the potential
metadata leakage.

22

Resolving the Vulnerabilities

• Spatial Vulnerability
• Byte-granularity bound information

• Temporal Vulnerability
• Re-randomizes the Identifier
• Changes signature hash result
• Immediately invalidates outdated pointers holding the outdated signature

23

Implementation

• SoC research framework
with PCIe 3.0 x8 bus

• Customizable
interconnection between
PCIe bus and DRAM

• Baseline for various
hardware-software co-design

• High performance IOMMU
• 5.8% throughput overhead
• 5.6% CPU time overhead
• Comparable to IOMMUs on

commercial SoCs

24

Implementation

• The hardware authenticator is put between PCIe bus and DRAM.

25

Implementation

• The hardware authenticator is put between PCIe bus and DRAM.
• The CPU uses MMIO to control the Authenticator on the bus.

26

Implementation

• The hardware authenticator is put between PCIe bus and DRAM.
• The CPU uses MMIO to control the Authenticator on the bus.
• The Authenticator intercepts and authenticates the DMA transactions.

27

Evaluation

• DMAAUTH brings 1.0% throughput overhead, 1.8% CPU time overhead
• Significantly faster than IOMMU

28

Takeaways

• DMAAUTH hardware-software co-design
• Defeats DMA attacks effectively
• Is significantly faster than IOMMU
• Is transparent to existing hardware
• Requires zero driver modification

• Arithmetic Capable Pointer Authentication
• Supports pointer arithmetic
• Ensures pointer integrity

• PCIe-capable research framework
• Is equipped with high-performance IOMMU
• Provides customizable research platform

29

Q & A

30

	DMAAUTH: A Lightweight Pointer Integrity-based Secure Architecture to Defeat DMA Attacks
	Agenda
	DMA Attack
	DMA Attack
	Defense: IOMMU
	Defense: IOMMU
	Vulnerabilities
	Vulnerabilities
	Motivation
	Characterization: Access Pattern
	Characterization: Mapping Size
	Design
	Design
	Design
	Design
	Design
	Design
	Design
	Design
	Solution to Pointer Arithmetic: APAC
	Metadata Format and Positioning
	Metadata Format and Positioning
	Resolving the Vulnerabilities
	Implementation
	Implementation
	Implementation
	Implementation
	Evaluation
	Takeaways
	Q & A

