ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

3™ [SENIX

SECURITY SYMPOSIUM

Understanding Ethereum Mempool Security under
Asymmetric DoS by Symbolized Stateful Fuzzing

AVAILABLE REPRODUCED

Syracuse
University

Introduction: Asymmetric Denial of Ethereum Mempool Service

Mempool - critical subsystem in blockchain

< A buffer of unconfirmed txs to feed validators.

3. €& & eee

Web3 Mempool Validator Blocks

Introduction: Asymmetric Denial of Ethereum Mempool Service

Mempool - critical subsystem in blockchain

< A buffer of unconfirmed txs to feed validators.
% Victims of a denied mempool?

A
o &2 cee

Web3 Mempool Validator Blocks
client

Introduction: Asymmetric Denial of Ethereum Mempool Service

Mempool - critical subsystem in blockchain

% A buffer of unconfirmed txs to feed validators.
% Victims of a denied mempool?
> = Validator collecting zero block revenue.
> = \Web3 users unable to trade.

 —— l — —

% v NENENS,
Web3 Mempool Validator Blocks
client

Introduction: Asymmetric Denial of Ethereum Mempool Service

Asymmetric mempool-DoS attacks (ADAMS)

% Existing attacks (limited): DETER [CCS’21] and MemPurge [SEC’24]
% Very practical and tested successful on Ethereum testnets.

nnnnnnnnn Miner Gas Used

OOOOOOOOOOOOOOOOOOOOO

9450107 2minsago 31 0 0x0000000000b00df35...

0000000000000000000
9450101 S5minsago 46 0 0x0000000000b00df35.

5555555555555555555

Introduction: Asymmetric Denial of Ethereum Mempool Service

Asymmetric mempool-DoS attacks (ADAMS)
% Existing attacks (limited): DETER [CCS’21] and MemPurge [SEC’24]

iner

oooooooooooooooooooooo

9450107 2minsago 31 0 0x0000000000b00df35...

0000000000000000000

9450104 4 mins ago 1 [} 21,000 (0.26%)
L] L] L]
Limitations of mem pOOl-DO research i o RO N SO e MO Q e
9450102 5 mins ago 51 0
9450101 S5minsago 46 0 0x0000000000b00df35.

% Attacks are manually discovered. o o o s
% Cumbersome process for always-evolving SW.
% Goal: Automatically discover mempool DoS vulnerabilities?

Introduction: Finding ADAMS Bugs by Mempool Fuzzing

Why not use existing blockchain fuzzers?

¢ Not to find implementation bugs or crashes:
> AFL, Loki [NDSS’23] insufficient.
*** Mempool‘s input space larger than consensus protocols
> Mempool takes in invalid txs and txs of varying prices.
> Consensus fuzzer, Tyr [SP’23], insufficient.
** Not a differential-fuzzing problem, as two nodes’ mempools differ
> Differential fuzzer, Fluffy [OSDI’20], inapplicable.

Introduction: Our Proposed Solution

mMpfuzz : A symbolized stateful mempool
fuzzer for finding DoS vulnerabilities.

Fuzzing Approach: Design Rationale

% Challenges: Huge search space
> Stateful fuzzing= but still, the state-explosion problem.

% Key idea: Search symbolized txs/states, not concrete ones

> Observation: Same mempool behavior for a future tx , no
matter whoever the sender is or whatever nonce value.

A
ol
Symbolization: Summarize tx space into seven % CFLF0
. RN ([Ne—=2| F
symbols and cover one tx per symbol during S
i R
fuzzing. /1 —
—t—t—t : [
B' B 41 42 - A -

Senders

Fuzzing Approach: Workflow Overview sdb | > st
G I G A4 9
st [« | tX

Symbolized stateful fuzzer: seed database sdb € D)

A. Select seed-state st from sdb by energy. bug oracle

B. Mutate tx by instantiating symbols under st.

C. Send tx to MUT of state st and observe the end state st’.

D. Emit tx sequence if st’ meets bug oracle.

E. Otherwise check state feedback, add st’to sdb; go to A.

10

Fuzzing Approach: Bug Oracle and Tx Mutation

* Bug oracle 1: Eviction mempool DoS
> Full damage: No normal tx at the end state.

Sto M st, = I

> Low attack cost: Low adv tx fee at the end state.
d;f thEStn ix.fee < 8]

thesto ix.fee

[asymE (sto,0ps)

7

% Bug oracle 2: Locking mempool DoS

s Symbol-based tx mutation:
> Txs are instantiated by symbols based on the given state.

11

Fuzzing Approach: Seed Selection and State Feedback

% Select seed states from sdb by energy:
> Seed energy is determined by its symbolized cost.
> Energy reflects its potential to trigger bug oracles.

% State feedback:
> Symbolized state coverage feedback.
> State promising-ness in reaching bug oracle.
m Fewer normal txs or adversarial txs.

12

Evaluation: Discovered New Attacks

New attacks on latest Ethereum clients.
% Stealthier “turning”-based eviction attacks
> Valid-turned-invalid
m Turn valid tx into overdraft.
m Turn valid tx into future.

> Larger impact: Propagated to all nodes.

% New locking attacks
> QOccupy mempool by adversarial txs.
> Decline arriving normal txs.
> Lower average attack fee than victim's.

~

HYPERLEDGER

BESU

\
«

Go Ethereum

: co

ERIGON NETHERMIND®

U()ﬁ

-
open
N ethereum

. J
13

Evaluation: Performance

% > 100x speedup against 4 baselines.
> Detect DETER attacks.
> B1: Stateless fuzzer.

> B2: Concrete-state-coverage fuzzer.

> B3: B2 enhanced using number of invalid txs as energy.

> B4: mpfuzz without state promising-ness feedback.

Settings B1 B2 B3 B4 mpfuzz
6slot-2h Timeout 54 (min) 8 (min) 1.22 (min) 0.03 (min)
16slot-16h Timeout Timeout 447 (min) Timeout 0.06 (min)

14

Acknowledgement & Open Source

% Ethereum Foundation’s support via bug bounty & academic grants.

- DoS-secure tx propagation on Ethereum: Exploit generat/on and attack detectlon

% Partially supported by NSF awards. v
XT2/DETER-Z / (.]
XT3/DETER-X+DETER-Z J { . l
XT4 / « /
‘ ‘ XT5] l
< Open source |45 % Bugs reported & mmm 1
‘‘‘‘‘‘‘‘‘‘‘ f gr(v)nin XT1 & & v
con |rmed by EF e A R
amraer 1 Teml"y Bl mml | |Vethermind<= XT4 l (‘
EVALUATED
/- == = Ll rtvi=—r-r-a N [it v | «.
XT1/ J « «
ARTIFACT i v v
EVALUATED XT4 ™1 1
€p “socinon
’ XT2/1 ‘/ ('
REPRODUCED XT9 v
v v v

Paper Link

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

o, €rron e,

| FuncrionaL il RePRODUCED

Understanding Ethereum Mempool Security under Asymmetric DoS by Symbolized

Stateful Fuzzing
Yibo Wang Yuzhe Tang = Kai Li Wanning Ding
Syracuse University Syracuse University San Diego State University Syracuse University
ywang349@syr.edu ytang100@syr.edu kli5 @sdsu.edu wding04 @syr.edu
Zhihua Yang
Syracuse University
zyang47@syr.edu

Abstract

In blockchains, mempool controls transaction flow before
consensus, denial of whose service hurts the health and se-
curity of blockchain networks. This paper presents MPFUZZ,
the first mempool fuzzer to find asymmetric DoS bugs by
exploring the space of symbolized mempool states and op-
timistically estimating the promisingness of an intermedi-
ate state in reaching bug oracles. Compared to the baseline
blockchain fuzzers, MPFUZZ achieves a > 100x speedup in
finding known DETER exploits. Running MPFUZZ on major
Ethereum clients leads to discovering new mempool vulnera-
bilities, which exhibit a wide variety of sophisticated patterns,
including stealthy mempool eviction and mempool locking.
Rule-based mitigation schemes are proposed against all newly
discovered vulnerabilities.

1 Introduction

In Ethereum, a mempool buffers unconfirmed transactions
from web3 users before they are included in the next blocks.
Mempool provides the essential functionality to bridge the
gap between varying rates of submitted transactions and rates
of produced blocks, regardless of public or private transac-
tions it serves. As shown in recent studies [29], denying a
mempool service can force the blockchain to produce blocks
of low or even zero (Gas) utilization, undermining valida-
tors’ incentives and shrinking the blockchain networks in the
long run, re-introducing the 51% attacks. Besides, a denied
mempool service can prevent normal transactions from block
inclusion, cutting millions of web3 users off the blockchain
and failing the DApps relying on real-time blockchain access.
Problem: Spamming the mempool to deny its service has
been studied for long [15,19,24,34]. Early designs by send-
ing spam transactions at high prices burden attackers with
high co: nd are of limited practicality. What poses a real
threat is Asymmetric DeniAl of Mempool Service, coined
by ADAMS, in which the mempool service is denied at an

*= Yuzhe Tang is the corresponding author.

asymmetrically low cost. That is, the attack costs, in terms
of the fees of adversarial transactions, are significantly lower
than those of normal transactions victimized by the denied
mempool. In the existing literature, DETER [29] is the first
ADAMS attack, and it works by sending invalid transactions
to directly evict normal transactions in the mempool. Mem-
Purge [36] is a similar mempool attack that finds a way to
send overdraft transactions into Geth’s pending transaction
pool and causes eviction there. These known attacks are easy
to detect (i.e., following the same direct-eviction pattern). In
fact, the DETER bugs reported in 2021 have been successfully
fixed in all major Ethereum clients as of Fall 2023, including
Geth, Nethermind, Erigon, and Besu. Given this state of af-
fairs, we pose the following research question: Are there new
ADAMS vulnerabilities in the latest Ethereum clients already
patched against direct-eviction based attacks?

This work takes a systematic and semi-automated approach
to discovering ADAMS vulnerabilities, unlike the existing
DETER bugs that are manually found. Fuzzing mempool im-
plementations is a promising approach but also poses unique
challenges: Unlike the consensus implementation that reads
only valid confirmed transactions, the mempool, which resides
in the pre-consensus phase, needs to handle various uncon-
firmed transactions, imposing a much larger input space for
the fuzzer. For instance, a mempool can receive invalid trans-
actions under legitimate causes,' and factors such as fees or
prices are key in determining transaction admission outcomes.
Existing blockchain fuzzers including Fluffy [37], Loki [30]
and Tyr [26] all focus on fuzzing consensus implementation
and don’t explore the extra transaction space required by mem-
pool fuzzing. As a result, directly re-purposing a consensus
fuzzer to fuzz mempool would be unable to detect the DETER
bugs as evaluated in Appendix § A, let alone discover more
sophisticated new ADAMS bugs.

Proposed methods: To efficiently fuzz mempools, our key ob-
servation is that real-world mempool implementation admits
transactions based on abstract “symbols”, such as pending

!For instance, future transactions can be caused by out-of-order informa-
tion propagation in Ethereum.

.;iQ/A >

Introduction: Asymmetric Denial of Ethereum Mempool Service

Mempool - critical subsystem in blockchain

«» A buffer of unconfirmed txs to feed validators.
< Victims of a denied mempool?
> = Validator collecting zero block revenue.
> = Web3 users unable to trade.

A A A
G- € —floon

Web3 Mempool Validator Blocks
client

Fuzzing Approach: Bug Oracle and Tx Mutation

< Bug oracle 1: Eviction mempool DoS
> Full damage: No normal tx at the end state.

stoNsty, =
> Low attack cost: Low adv tx fee at the end state.
def Loemtx-fee S]

ZIXEIRQ tx.fee

[asymE (sto,0ps)

< Bug oracle 2: Locking mempool DoS

« Symbol-based tx mutation:

> Txs are instantiated by symbols given a state.

Yibo Wang ywang349@syr.edu
Dr. Yuzhe Tang ytang100@syr.edu

Fuzzing Approach: Design Rationale

2

% Challenges: Huge search space
> Stateful fuzzing= but still, the state-explosion problem.
< Key idea: Search symbolized txs/states, not concrete ones.

> Observation: Same mempool behavior for a future tx F, no
matter whoever the sender or whatever nonce value.

=

Symbolization: Summarize tx space into seven

]
symbols and cover one tx per symbol during §
fuzzing. ; : :
BB A A A
Senders
9
Evaluation: Discovered New Attacks (")
Q HYPERLEDGER
BESU
New attacks on latest Ethereum clients. Go Ethereum
< Stealthier “turning”-based eviction attacks co
> Valid-turned-invalid)
m Turn valid tx into overdraft. SRR NETHERMIND

m Turn valid tx into future. 2~
> Larger impact: Propagated to all nodes. @6‘)@ . e
. J

< New locking attacks

> Occupy mempool by adversarial txs. ("

> Decline arriving normal txs. by Aopen
5 i g e 7

> Lower average attack fee than victim's. Vv ethereum

J/

13

17

mailto:ywang349@syr.edu

