
SeaK: Rethinking the Design of a
Secure Allocator for OS Kernel

Zicheng Wang, Yicheng Guang, Yueqi Chen
Zhenpeng Lin, Michael Le, Dang K Le

Dan Williams, Xinyu Xing, Zhongshu Gu, Hani Jamjoom

1

Summary of (Linux) Kernel Heap Exploits

• Taxonomy:
• spatial/temporal overlapping
• within/cross cache

• Essence: overlapping between corruptions
introduced by vulnerable objects and
sensitive data in victim objects

2

Existing Linux Kernel Hardenings

• By-default enabled (C1): freelist
randomization, freelist obfuscation,
and heap zeroing

• By-default disabled (C2): KFENCE,
structure layout randomization

• Lightweight “debugging” (C3):
slub_debug

Hardenings in C1 are widely bypassed
In C2, KFENCE can isolate only 0.005%
-0.35% target objects; Securely storing
random seed is challenging in structure
layout randomization
C3 can be bypassed by Dirtycred attack
(exp15) 3

Existing Linux Kernel Hardenings (cont.)

In addition, C3 has significant performance
overhead.
Used as a debugging feature by default.

4

Our Insight

• Trade-off between overhead and
effectiveness persists if we protect
every kernel object

• Do we really need to protect every
object?

small overhead

low effectiveness

large overhead

high effectivenessWhat really matters is
exploit-critical objects

5

Research on Exploit-critical Objects

• Vulnerable objects vary from bug to
bug

• We keep finding new victim objects

Challenge: It’s impossible to have an
oracle set of all exploit-critical objects

6

Key Idea: An On-demand Secure Allocator

• Protection on demand
• Type granularity, named

atomic alleviation
• Dynamic enforcement

7

struct
file

subsystems

objects
exploit

struct
seq

Technical Background: eBPF

• In-kernel virtual machine which
can safely and efficiently
execute C programs from user
space

• eBPF programs can be attached
to any kernel instructions

8

Source: https://ebpf.io/what-is-ebpf/

Design Overview

9

synthesize an eBPF program to
instrument the kernel

replace kmalloc and
kfree with our strategy

manage the metadata of dedicated regions
and isolated objects

isolate objects
with guard pages
and random offset

eBPF Synthesis in Detail

10

function+offset: alloc site/free site (where to instrument the eBPF programs)

the type of alloc/free function
in kernel: different kpis have
different prototypes

we apply different methods to read object
size considering different kpis

object size is the first parameter

object size is a field of kmem_cache

Run-time Separation in Detail

11

look up the dedicated region
to allocate objects with ip-
size-priv-zone as keys

look up metadata according to
object address

set guard pages to prevent
spatial corruption intro
dedicated region
set random offset to prevent
temporal corruption intro
dedicated region

Example: CVE-2021-4154 (DirtyCred)

12

/tmp/x struct file representing
a writable file

free slot

/etc/passwd

allocate

a dangling pointer generated

struct file representing a
readable and privileged file

free

the allocation site of file object

the free site of file object

we use alloc/free site to generate the
eBPF program to protect struct file

temporal overlapping between
objects with different privileges key: 0xffffffff80adbcd2-256-0-0

0xffffffff80adbcd2-256-1-0

privilege

Demo
• an Intel CPU with VT-X virtualization feature
• 64GB memory
• 300GB disk space
• Ubuntu 22.04.4 LTS (Jammy Jellyfish)

13

Effectiveness Evaluation

14

Separating vulnerable objects Separating victim objects

Peformance Overhead

Cold: scarcely allocated objects
Hot: frequently allocated objects
Durable: objects with long lifespan
File: struct file

15

Even for the hot type, the highest
overhead is only 2.49%

Negative number is caused by the
influctation of LMbench

Memory Usage

16

The memory overhead of 64 AAs is on par with
vanilla, with occasional variances up to 100MB

Scalability

17

Even for 64 cases, the
average overhead is 0.04%

Contribution

• SeaK is a secure kernel allocator, protecting exploit-critical
objects
• Insights of inherent obstacles of designing a secure allocator
• A new and practical strategy to secure kernel heap
• Open-source design and implementation
• Negligible overhead and high scalability

Github repo: https://github.com/a8stract-lab/SeaK

18

Email:yicheng.guang@colorado.edu

https://github.com/a8stract-lab/SeaK
mailto:yicheng.guang@colorado.edu
mailto:zicheng.wang@colorado.edu

