ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

'''''''
é(’ ASSOCIATION

AVAILABLE REPRODUCED

SeakK: Rethinking the Design of a
Secure Allocator for OS Kernel

Zicheng Wang, Yicheng Guang, Yueqgi Chen
Zhenpeng Lin, Michael Le, Dang K Le
Dan Williams, Xinyu Xing, Zhongshu Gu, Hani Jamjoom

Northwestern

T==s VIRGINIA
University = 7

SEE=STE TECH 1

Summary of (Linux) Kernel Heap Exploits

spatial overlapping

* Taxonomy:

 spatial/temporal overlapping
 within/cross cache -

vuln. obj | vic. obji

:- ' sensitive data
» Essence: overlapping between corruptions
iIntroduced by vulnerable objects and vuln. obj ||
sensitive data in victim objects free ' |
free slot > tem por'fl
vic. obj i |,

Existing Linux Kernel Hardenings

« By-default enabled (C1): freelist
randomization, freelist obfuscation,
and heap zeroing

« By-default disabled (C2): KFENCE,
structure layout randomization

 Lightweight “debugging” (C3):
slub_debug

Exploits

2021-4154 (expl)
2021-22600 (exp3)
2022-0185 (exp4)
2022-27666 (exp6)
2022-29582 (exp9)
2022-1786 (exp13)
2022-20409 (exp15)

Hardenings in C1 are widely bypassed

In C2, KFENCE can isolate only 0.005%
-0.35% target objects; Securely storing
random seed is challenging in structure
layout randomization

C3 can be bypassed by Dirtycred attack
(exp15)

Existing Linux Kernel Hardenings (cont.)

In addition, C3 has significant performance
overhead.

Used as a debugging feature by default.

LMbench C1 C2
Simple syscall 0.35% | 1.06%
Simple read 098% | 3.73%
Simple write 041% | 1.71%
Select on 100 fd’s -0.64% 1.21%
Signal handler install -1.35% | -1.88%
Signal handler overhead | 0.75% | 3.29%
fork+exit 0.60% | 1.76% || 168.17%
fork+execve 2.42% 1.56% | 177.22%
fork+/bin/sh -c 121% | 2.32% | 151.55%
UDP latency 391% | 4.97% |\144.34%
TCP/IP connection -2.74% | 5.25%
AF_UNIX bandwidth -0.20% | 0.27%
Pipe bandwidth 0.80% | 1.16%

Phoronix C1 C2 3
Sockperf (Msgs/sec) -0.27% | -0.61% (57.58%)
OSBench (Ns/Event) -0.08% | -1.00% 25%

7-Zip Compress (MIPS) | -0.34% | 0.54% -0.39%
FFmpeg Live (FPS) -0.14% | 0.28% 1.25%
OpenSSL SHA256 (B/s) | 0.01% | 0.04% 0.01%
Redis SET (Reqs/sec) -037% | 0.47% 0.55%
SQLite Speedtest (sec) 0.52% 1.34%
Apache 100 (Regs/sec) | -0.50% | -0.42% (46.29%)4

Our Insight

low effectiveness

 Trade-off between overhead and /
effectiveness persists if we protect small OVW _
every kernel object it

* Do we really need to protect every
object?

large overhead

What really matters is T~ ir’\wfective“ess

exploit-critical objects

Research on Exploit-critical Objects

GREBE: Unveiling Exploitation Potential for Linux
Kernel Bugs

d Vu I I"] e ra b I e O bj eCtS Va ry fro m b u g to Zhenpeng Lin'™*, Yuegi Chen't, Yuhang Wu't, Dongliang Mu'll, Chensheng Yu!, Xinyu Xing?!, Kang 1i¥

The Pennsylvania State University School of Cyber Science and Engineering, HUST
{George Washington University §Northwestern University 9Baidu USA

b u g {zplin, ycx431, yuhang}@psu.edu, dzm91@hust.edu.cn,

« We keep finding new victim objects

SLAKE: Facilitating Slab Manipulation for Exploiting
Vulnerabilities in the Linux Kernel

Cha”enge It,s ImpOSSIble to have an ScAvy: Automated Discovery of Memory Corruption Targets in Linux Kernel
oracle set of all exploit-critical objects for Privilege Escalation

A Systematic Study of Elastic Objects in Kernel Exploitation

Yueqi Chen Zhenpeng Lin Xinyu Xing
ychen@ist.psu.edu zplin@psu.edu xxing@ist.psu.edu
The Pennsylvania State University The Pennsylvania State University The Pennsylvania State University

Key Idea: An On-demand Secure Allocator

a

subsystems

r

Y 9
N

* Protection on demand

* Type granularity, named
atomic alleviation

* Dynamic enforcement

6!
objects
exploit a

7

Technical Background: eBPF

tise Networking Security Obs%r;;zgty &
Cases
* In-kernel virtual machine which A eBPF T
can safely and efficiently e
execute C programs from user
space User WeBPF [§ cOG® "
Space SDKs Application
» eBPF programs can be attached ;
to any kernel instructions K eBPF Py
Ketnel Kernel Runtime —

Source: https://ebpf.io/what-is-ebpf/

Design Overview

synthesize an eBPF program to
instrument the kernel

d_eBPF Synthesizer ’ User Space
Kernel S ace isolate objects
Oxffffff81c32ff3: '\ alloc P l with guard pages
callg <kmalloc> /- -b-\ handler N @lcated | and random offset
Oﬁrrﬁﬁa%"aamb 24 N egion >:
C : 14
callg <kfree> B free 4 Maps guardpagesﬂ+ |
! Y handler
Runtime Kernel |
__________________ =)
replace kmalloc and manage the metadata of dedicated regions

kfree with our strategy and isolated objects

eBPF Synthesis in Detail

function+offset: alloc site/free site (where to instrument the eBPF programs)

SEC()
t probe_alloc_fiTe(Struct pt_regs *
ub4d ip = 0;

SEC()
't probe_free_file(Struct pt_regs*

the type of alloc/free function
in kernel: different kpis have
different prototypes

ué4 ip = 0;

object size is the first parameter

void *kmallo gfp_t gfp); we apply different methods to read object

*kmem_cache_alloc(struct@cache *c@ int flags) Size considering different kpis

object size is a field of kmem_cache

10

Run-time Separation in Detalil

alloc /Kﬁ;size—priv-zor;\‘_ look up the dedicated region
handler [\ W to allocate objects with ip-
N/ : region- size-priv-zone as keys

X

Y :
free f_f ey: addr 0bj2reg . look up metadata according to
handler e: ip-size-priv-zone object address

d d rd |

guar ran : ua ,

Harie [foset object ?)aqe) object | ... [set guard pages to prevent
spatial corruption intro

guard : guard dedicated region

page I opject page . [set random offset to prevent

]] temporal corruption intro
dedicated regions dedicated region

11

Example: CVE-2021-4154 (DirtyCred)

the allocation site of file object

/tmp/x struct file representing
a writable file

alloc_empty_file . . .
free 1loc em tz ELVE e pean o the free site of file object

a
: . ile_free_rcu fs/file_table.c:50)<—— real release site!
free slot a dangling pointer generated <|=0551 s r>ee_rcu‘

__alloc_file
allocate

/etc/passwd struct file repregepting a we use alloc/free site to generate the
readable and privileged file

eBPF program to protect struct file

temporal overlapping between privilege
objects with different privileges key: Oxffffffff80adbcd2-256 é 0

Oxffffffff80adbcd2-25641-0

12

Demo

an Intel CPU with VT-X virtualization feature
64GB memory

300GB disk space

Ubuntu 22.04.4 LTS (Jammy Jellyfish)

Effectiveness Evaluation

Exploits Ccl1] 2 | c3 ﬁeak\ SYZ Title Cl| C2 | C3 | fear
GPF-delayed_uprobe_remove O |00 | @ (o
2021-4154 (expl) O | 0| @ ® WARNING-call. rcu 5 | o | e ® \
2021-22600 (eXPB) O Olo ® o WARNING-ODEBUG bug-tcf_queve_work | O | O/® | @ o
2022-0185 (exp4) O | 00| @ ® KASAN-uaf-read-route4_get O 00| @ ®
2022-27666 (exp6)) O/ W & UBSAN-shift-oob-dummy_hub_control O [0 | @ o
2022-29582 (exp9) o Ol ® ® KASAN -uaf—reac'l—hci_s.enduacl ' O |0 | @ o
BUG-corrupted list-kobject_add_internal O[O | @ &
2022-1786 (expl 3) O o/ ® o KMSAN-uninit-value-geneve_xmit O |00 | e ®
2022-20409 (expl5) @) ol | O o KASAN-slab-oob-write-decode_data O |0 @ o

(

Separating vulnerable objects Separating victim objects

Peformance Overhead

LMbench (ms) Vanilla Cold Hot Durable File
Simple syscall 0.1942 | -1.68% | 0.67% | 0.06% | 0.08% | -0.29% | -0.94%
Simple read 0.2946 | 020% | 0.58% | 0.49% | -0.48% | 0.03% | -0.45%
Simple write 0.2502 | -2.67% (-2.42%) 051% | 0.15% | 0.56% | -0.18%
Select on 100 fd’s 1.0718 | 0.26% \Uﬁ -0.16% | -0.49% | -0.10% | -0.01%
Signal handler install 0.2538 | -1.28% | -1.32% | 0.17% | 0.33% | 0.11% | 0.02%
Signal handler overhead 0.8815 | -0.90% ;_53& 0.12% 1.54% | 0.35% | 0.33%
fork+exit 99.6357 | 0.83% (_ 2.49%) -049% | -2.82% | -3.44% | -2.43%
fork+execve 283.2725 1.519% | 0.23% | 2.32% 1.82% | -1.76% | 3.34%
fork+/bin/sh ¢ 678.1250 | 293% | 2.70% | 2.35% | 0.23% | -1.16% | 2.28%
UDP latency 5.8852 1.25% | -1.10% | 0.07% | -0.73% | -1.37% | -0.32%
TCP/IP connection 10.1259 | 0.13% | 0.78% | 051% | -0.01% | 2.04% 1.62%
AF_UNIX bandwidth 9460.5067 | 0.67% | -0.56% | 0.71% | 0.92% | -1.85% | -1.26%
Pipe bandwidth 4569.4767 | 0.87% | -1.37% | -1.03% 1.94% | 0.56% | -3.02%

Phoronix Vanilla Cold Hot Durable File
Sockperf (Msgs/sec) 739608 | -0.04% | -1.73% | -1.30% | 0.75% | 0.63% | 0.93%
OSBench (Ns/Event) 78.28 | -0.92% | -0.30% | -0.23% | -1.18% | -0.15% | -2.23%
7-Zip Compress (MIPS) 29521 | -1.31% | 0.95% 1.07% | 0.60% 1.62% | 0.97%
FFmpeg Live (FPS) 178.08 | 045% | -1.29% 1.63% 1.57% | 0.86% | 0.68%
OpenSSL SHA256 (B/s) | 1225189783 | 0.28% | -0.31% | -0.05% | 0.02% | 0.23% | -0.08%
Redis SET (Regs/sec) 1932771 1.49% | -1.21% | -3.36% | -0.28% | 0.30% 1.03%
SQLite Speedtest (sec) 62.63 | 0.57% 1.64% | -1.41% | -0.88% 1.44% | -0.41%
Apache 100 (Reqgs/sec) 48216 | -0.63% | 0.95% | -0.40% | 0.49% | 0.68% | 0.18%

Cold: scarcely allocated objects
Hot: frequently allocated objects
Durable: objects with long lifespan
File: struct file

Even for the hot type, the highest
overhead is only 2.49%

Negative number is caused by the
influctation of LMbench

15

Memory Usage

The memory overhead of 64 AAs is on par with
vanilla, with occasional variances up to 100MB

MBytes
i P58 8 L o e R T S B e SR oot
1000 -
800 - I
|

- Vanilla
il Cold

e H O
400 ~ Durable(avg.) ‘

file
200 | G4AAS:
e Max Point

0 ﬁ” i ﬁ---r B

0 200

400 600 800 1000
Time Elapsed (s)

16

Scalability

LMBench 2 cases | 4 cases | 8 cases | 16 cases | 32 cases @ca@
Simple syscall 0.70% | -0.01% | -1.52% | -1.20% 0.28% 1.43%
Simple read 0.06% | 0.16% | -0.35% 0.16% 0.78% 0.05%
Simple write 0.55% | -2.28% | -2.58% | -2.28% | -0.21% 2.44%
Select on 100 fd’s -0.11% | -0.04% | 0.11% 0.00% | -0.36% 0.01%
Signal handler install -0.77% | -1.21% | -1.55% | -121% | -1.01% | -0.39%
Signal handler overhead | 0.26% | -0.34% | -1.14% | -0.58% 1.55% 3.29%
fork+exit -2.68% | 3.26% | 0.06% 326% | -2.04% | -3.30%
Pipe bandwidth -145% | 1.00% | -0.16% 1.89% 0.13% 0.04%

Avg. -0.32% | 0.05% | -0.55% | 0.01% | 0.20% C_0.04%)
Phoronix 2 cases | 4 cases | 8 cases | 16 cases | 32 cases | 64 cases
Sockperf (Msgs/sec) 0.48% | -1.33% | -1.65% | -1.30% 4.20% 3.75%
OSBench (Ns/Event) -0.24% | -0.16% | -0.19% | -0.23% 1.45% 0.45%
7-Zip Compress (MIPS) | -1.88% | -1.22% | -0.50% 1.07% | -0.29% 0.41%
FFmpeg Live (FPS) 0.48% | -0.83% | -0.34% 1.63% 1.97% 0.87%
OpenSSL SHA256 (B/s) | -0.10% | -0.16% | -0.09% | -0.05% | -0.07% 0.04%
Redis SET (Regs/sec) 0.94% | -3.30% | -3.06% | -3.36% | -1.06% | -2.99%
SQLite Speedtest (sec) 0.37% | -0.31% | 0.57% 1.41% 0.00% 0.15%
Apache 100 (Regs/sec) | -0.30% | -0.52% | -0.71% | -040% | -0.55% | -0.85%
Avg. -0.28% | -0.74% | -0.33% | -0.31% 0.71% 0.22%

Even for 64 cases, the
average overhead is 0.04%

17

Contribution

» SeaK is a secure kernel allocator, protecting exploit-critical
objects

* Insights of inherent obstacles of designing a secure allocator
* A new and practical strategy to secure kernel heap

« Open-source design and implementation

* Negligible overhead and high scalability

Github repo: https://github.com/a8stract-lab/SeaK
Email:yicheng.guang@colorado.edu

https://github.com/a8stract-lab/SeaK
mailto:yicheng.guang@colorado.edu
mailto:zicheng.wang@colorado.edu

