
PRACTICAL SECURITY ANALYSIS OF
ZERO-KNOWLEDGE PROOF CIRCUITS

Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles,
Shankara Pailoor, Kyle Charbonnet, Isil Dillig, Yu Feng

Zero-knowledge Proofs (ZKPs)

ZKP Technologies & Blockchain

Compute with ZKP

ZK Proof

Submit
Trustless Verify

Off-chain On-chain

Scalability

What can we gain?

Heavy Computation

SNARK Workflow

Semi-Automated
(Source of bugs)

Input, Output, Intermediate
nodes are called signals

Compile

SNARK

Polynomial Field
Equations

Suppose we want to construct a SNARK for 𝒇(𝒙)

Encode 𝒇 as circuit 𝑪𝒇

𝒙 𝒇(𝒙)
𝑷(𝑪𝒇)

Prover𝒇

Verifer𝒇

Semi-Automated Compilation

1. Some computation not expressible as field equations

template Bits2Point_String() {

signal input in[256];

signal output out[2];

// . . .

var tmp = (1 - y2)/(a - 2*y2);

var x = sqrt(tmp)

}

Can’t be expressed
as field equations

Required Manual Constraint

2. Highly non-trivial to automatically infer constraints

pointbits.circom

𝑥2 = 𝑡𝑚𝑝

Ideally Field Equations and Circuit should be equivalent:

Circuits and equations are often not equivalent!

Manually adding constraints is
time consuming and error prone

For every 𝑥, 𝑧. 𝐶𝑓 𝑥 = 𝑧 if and only if 𝑥, 𝑧 satisfy 𝑃(𝐶𝑓) .

Significance

Under-constrained Circuits

Circuit is under-constrained if the output signals
are not uniquely determined by the input signals
in polynomial form.

Allows attackers to get bogus proofs
verified.

Be used to drain all tokens

Be used to double-spend

Under-constrained Circuits
(Constraint-Computation Discrepancies)

template Edwards2Montgomery() {

 signal input in[2];

 signal output out[2];

 out[0] <-- (1 + in[1]) / (1 - in[1]);

 out[1] <-- out[0] / in[0];

 out[0] * (1-in[1]) === (1 + in[1]);

 out[1] * in[0] === out[0];

}

component main = Edwards2Montgomery();

Computation (Prover)

out[0] <-- (1 + in[1]) / (1 - in[1]);

out[1] <-- out[0] / in[0];

Constraints (Verifier)

out[0] * (1-in[1]) === (1 + in[1]);

out[1] * in[0] === out[0];

out[0] === 0;

1 + in[1] === 0;

in[0] === 0;

Computation

out[0] <-- 0 / 2;

out[1] <-- 0 / 0; (Undefined)

Constraints

0 * 2 === 0;

out[1] * 0 === 0;

Any out[1]could bypass the verification!

Circuit Dependence Graph (CDG)

Signals and computation and constraints dependencies between them compound a circuit:

Computation
out[0] <-- (1 + in[1]) / (1 - in[1]);

out[1] <-- out[0] / in[0];

Constraints
out[0] * (1-in[1]) === (1 + in[1]);

out[1] * in[0] === out[0];

Circuit Dependence Graph

Signals:

Computation Dependencies:

Constraints Dependencies:

Bug Detection via CDG
Circom code CDG

Division by Zero

template Edwards2Montgomery() {

 signal input in[2];

 signal output out[2];

 out[0] <-- (1 + in[1]) / (1 - in[1]);

 out[1] <-- out[0] / in[0];

 out[0] * (1-in[1]) === (1 + in[1]);

 out[1] * in[0] === out[0];

}

component main = Edwards2Montgomery();

Bug Detection via CDG (Automatic)

template CoreVerifyPubkeyG1(n, k){ // ...

 component lt[10];

 for(var i=0; i<10; i++){

 lt[i] = BigLessThan(n, k);

 for(var idx=0; idx<k; idx++) {

lt[i].b[idx] <== q[idx];}

 }

 for(var idx=0; idx<k; idx++){

lt[0].a[idx] <== pub[0][idx];}

 // lt.out is not used

}

component main = CoreVerifyPubkeyG1(55,7);

Circom code CDG

CDG
Construction

Tips: VDL is ` Vulnerability Description Language`.

Reported Bugs

VDL
Query

Detectors written in VDL

Major sources of bugs
1. Non-deterministic Signals
2. Unsafe Component Usage
3. Constraint-Computation Discrepancies

Evaluation Results

■ We implemented 9 detectors for the bug categories we mentioned.

■ We collected 258 Circom circuits from 17 popular open-source projects.

■ We inspected results manually to distinguish actual vulnerabilities and false alarms.

■ ZKAP had a lower FP rate.

■ ZKAP found 81 vulnerabilities across all bug categories automatically.

■ ZKAP identified previously unknown bugs, which were confirmed and fixed by developers.

Tips: ZKAP is the name of our tool: GitHub Codebase

https://github.com/whbjzzwjxq/ZKAP

Thanks and Q&A

	Slide 1: Practical Security Analysis of Zero-Knowledge Proof Circuits
	Slide 2: Zero-knowledge Proofs (ZKPs)
	Slide 3: ZKP Technologies & Blockchain
	Slide 4: SNARK Workflow
	Slide 5: Semi-Automated Compilation
	Slide 6: Significance
	Slide 7: Under-constrained Circuits
	Slide 8: Under-constrained Circuits (Constraint-Computation Discrepancies)
	Slide 9: Circuit Dependence Graph (CDG)
	Slide 10: Bug Detection via CDG
	Slide 11: Bug Detection via CDG (Automatic)
	Slide 12: Evaluation Results
	Slide 13: Thanks and Q&A

