UCSB

PRACTICAL SECURITY ANALYSIS OF
ZERO-KNOWLEDGE PROOF CIRCUITS

Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles,
Shankara Pailoor, Kyle Charbonnet, Isil Dillig, Yu Feng

/ero-knowledge Proofs (ZKPs)
™ alice .

« Vo tan Signals s

B
Inputs ﬁ @ ﬁ E

Witness Generator f Prover P

Bob
O & !
Public Inputs x % ;\ P Q‘?Proof 0

Verifier V

Vv
v X

/KP Technologies & Blockchain

Heavy Computation

\ﬂ l Trustless Verify
Compute with ZKP _(1 Submit
° e o ZK Proof .

Off-chain On-chain

il

\ Scalability

SNARK Workflow

Suppose we want to construct a SNARK for f(x)

Semi-Automated SNARK
(Source of bugs) T
(i o Compile : Prover, i
Encode f as circuit C; P f : i
5 P(Cy) | :
« Br o | L | |
\ | |
i Verifery |
Input, Output, Intermediate Polynomial Field i |
nodes are called signals Equations 1]

Semi-Automated Compilation

1. Some computation not expressible as field equations

pointbits.circom

template Bits2Point String()
signal input in[256];

signal output out[Z]; Required Manual Constraint
// ... -

var tmp = (1 - y2)/(a - 2*y2); = x* =tmp

var x = sqrt(tmp)

}

Can’t be expressed
as field equations

2. Highly non-trivial to automatically infer constraints

Significance

Ideally Field Equations and Circuit should be equivalent:
Forevery x,z.C¢(x) = z if and only if x, z satisfy P(Cy) .

Circuits and equations are often not equivalent!

Manually adding constraintsis
time consuming and error prone

Under-constrained Circuits

Circuitis under-constrained if the output signals @ Tornado Cash .
Oct 12,2019 - 3 minread Listen

are not uniquely determined by the input signals
Tornado.cash got hacked. By us.

in polynomial form.
Be used to drain all tokens

Allows attackers to get bogus proofs . : . :
. g gusp BigMod incorrectly omits range checks on the remainder #10
Ver'fled. xu3kev merged 1 commit into @xPARC:master from ecnerwala:rangecheckmod (5J on Apr 26

Disclosure of recent vulnerabilities

We have recently patched two severe bugs in Aztec 2.0. The first was found by an Aztec

engineer and the second by community members.

1. Lack of range constraints for the tree_index variable

Be used to double-spend

Under-constrained Circuits

(Constraint-Computation Discrepancies)

template EdwardsZ2Montgomery () {
signal input in[2];
signal output out[2];
out [0] <-- (1 + 1inJ[1]) /
out [1] <—-- out[0] / in]O
out [0] * (1-in[1l]) === (
out [1] * in[0] === out[0

}

component main = Edwards2Montgomery () ;

¥

Any out [1]could bypass the verification!

Computation (Prover)

out [0] <-- (1 + in[1]1) / (1 - in[11):

out [1] <-- out[0] / in[0];

Computation

out [0] <-- 0 / 2;
out[1l] <-- 0 / 0; (Undefined)

1 + in[1]

Constraints (Verifier)

out [0] * (1l-in[1l]) === (1 + in[1]);:
out [1] * in[0] === out][0];

Constraints
0 * 2 === 0;
out [1] * 0O === 0;

Circuit Dependence Graph (CDG)

Sighals and computation and constraints dependencies between them compound a circuit:

Computation

out[0] <-—- (1 + inJ[1])
out [1] <-- out[0]

(1 - in[1]);

/ in[0];

Constraints

out [0] * (1-in[1])

out[1l] * in[O0]

(1 + in[171):
out[0];

Circuit Dependence Graph

Signals:

Computation Dependencies: ——

Constraints Dependencies: =====-=

[outfo) *(1 - inft]) === (1 +in[1] |

ans
""""""
* LS
- -
. .,

1 +in[1]/1 - in[1]

[out[1] * in[0] ===

3
a,
ey
.....

'[out[1]*ir;[‘(;i —== out[0] J

Bug Detection via CDG

Circom code CDG

template EdwardsZMontgomery () {
signal input in[2]; [OMWVU-MUD==41+mUD]
signal output out[2]; | | e T

17 .
out [0] <-- (1 + in[1]) / (1 - in[1]); 1+in[1]/1-in[1]
out <-— out[0] / in[O0];

[1]
out[0] * (1-in[1l]) === (1 + inI[1]); \\\\‘
[1] * in[0]

out === out[0];

[out[1] * in[0] === out[0]]

}

component main = Edwards2Montgomery () ;

.
.
.
o‘..
.*

-
n'.
L
L]
.....

[Louttoy (1 - ini1) === (1 +ini1) | | outf1] *info] === out(0] |

............. R
+in[1]/1 - in[1]

out[0] /in[0]

0Ut[1] * In[O] —_ OUt[O]] /

& Division by Zero

out[0] / in[0]

%
+
.
.
Py
.t

,
.
.
.
ey
5
Tagg

'[out[1] * in[0] === out[0]]

Bug Detection via CDG (Automatic)

Circom code CDG Reported Bugs

template CoreVerifyPubkeyGl (n, k) {

component 1t[10];
for(var i=0; i<10; i++) {
1t[i] = BiglessThan (n, k);
for (var idx=0; idx<k; idx++) {
1t[1] .b[idx] <== g[idx];}
, CDG VDL
for(var idx=0; idx<k; idx++) { . , . ‘
1t[0].a[idx] <== pub[0] [idx];} Construction g y 7 Quel’y
// lt.out is not used
}
component main = CoreVerifyPubkeyGl (55,7) ;

Major sources of bugs

1. Non-deterministic Signals L
2. Unsafe Component Usage
3. Constraint-Computation Discrepancies

Detectors written in VDL

Tips: VDL is *~ Vulnerability Description Language .

Evaluation Results

m Weimplemented 9 detectors for the bug categories we mentioned.

m We collected 258 Circom circuits from 17 popular open-source projects.

m Weinspected results manually to distinguish actual vulnerabilities and false alarms.
m /KAP had a lower FP rate.

m ZKAP found 81 vulnerabilities across all bug categories automatically.

m ZKAP identified previously unknown bugs, which were confirmed and fixed by developers.

Tips: ZKAP is the name of our tool:

https://github.com/whbjzzwjxq/ZKAP

Thanks and Q&A

	Slide 1: Practical Security Analysis of Zero-Knowledge Proof Circuits
	Slide 2: Zero-knowledge Proofs (ZKPs)
	Slide 3: ZKP Technologies & Blockchain
	Slide 4: SNARK Workflow
	Slide 5: Semi-Automated Compilation
	Slide 6: Significance
	Slide 7: Under-constrained Circuits
	Slide 8: Under-constrained Circuits (Constraint-Computation Discrepancies)
	Slide 9: Circuit Dependence Graph (CDG)
	Slide 10: Bug Detection via CDG
	Slide 11: Bug Detection via CDG (Automatic)
	Slide 12: Evaluation Results
	Slide 13: Thanks and Q&A

