
*Sander Wiebing, *Alvise de Faveri Tron,
Herbert Bos, Cristiano Giuffrida

InSpectre Gadget:
Inspecting the Residual Attack Surface

of Cross-privilege Spectre v2

*Equal contribution joint first authors

⬝ New Spectre-V2 Attack with native gadgets: Native BHI
➔ Leaking kernel memory at 3.5 kB/sec on latest Intel CPUs

⬝ Defenses rely on mitigating Spectre ‘gadgets’

In Short

2

⬝ For the first time, we precisely reason about exploitability
➔ New approach to analyze Spectre gadgets

if (attacker < size) {

uint64_t secret = array[attacker];

 secret = secret & 0xFF;

 secret = secret << 12;

uint64_t transmission = base[secret];

}

Spectre Gadget

3

V1

ptr->foo();
void foo(void) {

uint64_t secret = array[attacker];

 secret = secret & 0xFF;

 secret = secret << 12;

uint64_t transmission = base[secret];

}

Spectre Gadget

4

V2

So, why is it important to find these gadgets?

Finding Gadgets: High-Level Data-Flow Approach

5

BHI results: >1000 potential gadgets

➔ exploitability highly uncertain

uint64_t secret = array[attacker];

 secret = secret & 0xFF;

 secret = secret << 12;

uint64_t transmission = base[secret];

Finding Gadgets: Pattern-Based Approach

6

➔ Non-standard gadgets can be exploitable, but other
fine-grained requirements have to hold

uint64_t secret = array[attacker];

 secret = secret & 0xFF;

 secret = secret << 12;

uint64_t transmission = base[secret];

Intel engineers results for BHI: 0 exploitable gadgets

Our Approach: In-Depth Inspection

uint64_t secret = array[attacker];

 secret = secret & 0xFF;

 secret = secret << 12;

uint64_t transmission = base[secret];

7

What is the range?

Which secret bits?

How much control? At which position?

Our Approach: In-Depth Inspection

8

uint64_t secret = array[attacker];

 secret = secret & 0xFF;

 secret = secret << 12;

uint64_t transmission = base[secret];

How much control? Which secret bits?What is the range?

How much control? Which secret bits?

Our Approach: In-Depth Inspection

9

Reasoner

Exploitable?

Which techniques?

What is the range?

10

InSpectre Gadget Workflow

What is the attack
surface with this
new mitigation?

I want to craft
an end-to-end

exploit

11

InSpectre Gadget Workflow

Results Analyzing Linux Kernel

12

⬝ New mitigations deployed by Intel and Linux Kernel developers
⬞ Both software and hardware

⬝ We found >1500 Spectre-V2 gadgets

⬝ Native BHI end-to-end exploit on Linux kernel:
⬞ Bypassing all deployed mitigations on latest Intel CPUs
⬞ Leaking arbitrary kernel memory at 3.5 kB/sec

InSpectre Gadget Demo

13

14

15

16

17

18

19

Native BHI Demo: Leaking the /etc/shadow File

25

Break KASLR

Scan for ‘root:’

Leak hash

V2

1

4

2

3

Setup BHI

26

27

Conclusion

⬝ InSpectre Gadget: in-depth inspection of Spectre gadgets
⬞ Using knowledge of advanced exploitation techniques

⬝ Native BHI: Leaking kernel memory on latest Intel CPUs

⬝ Paper & code available: vusec.net/projects/native-bhi

http://vusec.net/projects/native-bhi

