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Traditional Fine-Tuning Paradigm
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What is a common method to adapt pre-trained models to specific tasks?
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Traditional Fine-Tuning Paradigm
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Large-scale pre-trained models are costly to share and serve in the 
fine-tuning paradigm
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Visual Prompt Learning and Its Workflow
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A new paradigm is introduced to solve such limitations
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Pros of Prompt Learning
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•Remain the pre-trained model frozen
• Far fewer parameters are updated 
• Easy to share and serve to users
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Prompt as a Service (PaaS)
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Pros of PaaS 
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• For users
- Minimize their effort in developing a prompt

- Keep their data on premise

- Easily adapt to different downstream tasks

• For providers
- Reuse a single pre-trained model to support multiple downstream tasks

- Less computational resource for training

- Less storage space

•A well-generalized prompt becomes a valuable asset for PaaS 
providers



Privacy Risks of ML Models
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•Most previous research about privacy risks has focused on ML 
models at the model level
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[1] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot. Label-Only Membership Inference Attacks. In International 
Conference on Machine Learning (ICML), pages 19641974. PMLR, 2021.
[2] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-Kirkpatrick. An Empirical Analysis of Memorization in Fine-
tuned Autoregressive Language Models. In Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1816–1826. ACL, 2022.

Privacy information is leaked 
through fine-tuned models[1][2]



Privacy Risks of Prompt Learning
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•Assumption: will prompt learning heavily compress the training 
dataset information, thus leading to less effective privacy attacks?
- Compared to the fine-tune paradigm, only 0.08% params are updated
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Privacy Risks of Prompt Learning
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•Assumption: Will prompt learning heavily compress the training 
dataset information, thus leading to less effective privacy attacks?
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Membership Inference Attacks (MIAs)
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•Membership inference attacks (MIAs): infer whether a given data 
sample 𝒙 was in the training dataset of the target prompt
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Workflow Of MIA
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MIA Evaluation
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• Prompts are vulnerable to the membership inference attacks
•Metric-based attacks achieve the best performance in most cases, 

e.g., 93.20% on AFAD



MIA Defense
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•Adding Gaussian noise to the prompts
• This defense mechanism can achieve a decent utility-defense trade-

off when setting 𝜎 = 0.6
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Property Inference Attacks (PIAs)
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• Property inference attacks (PIAs): infer confidential properties of 
the training dataset that the PaaS provider does not intend to share
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Workflow of PIA
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PIA Evaluation
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• PIAs achieve good performance across different pre-trained models 
and datasets



PIA Defense
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•With the increase of 𝜎
- The effectiveness of PIA significantly declines for naïve attacks
- The target performance decreases by a large margin

• Fail to defend against property inference attacks
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Conclusions
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•We are the first to conduct comprehensive privacy assessment on
visual prompt learning
•Our empirical evaluation shows that visual prompts are vulnerable 

to both membership inference attacks and property inference 
attacks
•Adding Gaussian noise to prompts, can mitigate the membership 

inference attacks with a decent utility-defense trade-off but fails to 
defend against property inference attacks
•Other conclusions can be found out in our paper
-Overfitting affects the attack performance against visual prompt
- Factors that affect these two attacks…
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