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., . Traditional Fine-Tuning Paradigm

What is a common method to adapt pre-trained models to specific tasks?
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., . Traditional Fine-Tuning Paradigm

As the number of specific tasks gradually increases...
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Large-scale pre-trained models are costly to share and serve in the
s fine-tuning paradigm
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-, . Visual Prompt Learning and Its Workflow

A new paradigm is introduced to solve such limitations
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., . Pros of Prompt Learning

* Remain the pre-trained model frozen
 Far fewer parameters are updated

* Easy to share and serve to users
e.g., 20K params
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O (1) Request a prompt
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., . Pros of Paa$S

* For users
— Minimize their effort in developing a prompt
— Keep their data on premise

— Easily adapt to different downstream tasks

* For providers
— Reuse a single pre-trained model to support multiple downstream tasks
— Less computational resource for training

— Less storage space

* A well-generalized prompt becomes a valuable asset for PaaS
providers



. Privacy Risks of ML Models
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* Most previous research about privacy risks has focused on ML
models at the model level

Fine-Tuning Fine-Tuned Privacy information is leaked
" Models through fine-tuned models!1!i2l

Training
Dataset

[1] Christopher A. Choquette Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-Only Membership Inference Attacks. In International

Conference on Machine Learning (ICML), pages 19641974. PMLR, 2021.
[2] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-Kirkpatrick. An Empirical Analysis of Memorization in Fine-
tuned Autoregressive Language Models. In Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1816—1826. ACL, 2022.
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., . Privacy Risks of Prompt Learning

Fine-Tuning Fine-Tuned Models
g (86M params) \

Training
Dataset Prompt Visual Prompt
Learning (69K params)
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learned from
training data

" A set of parameters\
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* Assumption: will prompt learning heavily compress the training
dataset information, thus leading to less effective privacy attacks?

— Compared to the fine-tune paradigm, only 0.08% params are updated
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Privacy Risks of Prompt Learning
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* Assumption: Will prompt learning heavily compress the training
dataset information, thus leading to less effective privacy attacks?
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Membership Inference Attacks (MIAs)

* Membership inference attacks (MIAs): infer whether a given data

sample x was in the training dataset of the target prompt
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. _ Workflow Of MIA
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~ MIA Evaluation
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Figure 6: Attack performance of three membership inference attacks on four datasets.

* Prompts are vulnerable to the membership inference attacks

* Metric-based attacks achieve the best performance in most cases,
e.g., 93.20% on AFAD
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MIA Defense
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* Adding Gaussian noise to the prompts

* This defense mechanism can achieve a decent utility-defense trade-
off when setting 0 = 0.6
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Property Inference Attacks (PIAs)

* Property inference attacks (PIAs): infer confidential properties of
the training dataset that the PaaS provider does not intend to share
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‘... Workflow of PIA
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. PIA Evaluation
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Table 1: Experimental settings of the property inference attacks with the corresponding attack performance.

Inference . Downstream Target Inference Test Accuracy

Task Task Property Labels RN18 BiT-M  ViT-B
Ty CIFAR10 Image Classification Size (T%) | {500,2000} | 100.00 100.00 100.00
Size (Tz“iz") {500, 2000} | 100.00 100.00 100.00

T, CelebA | Multi-Atrribute Classification | Proportion of Males (Tz'"“"’) {30%, 710%} | 99.75 99.25  93.00
Proportion of Youth (7‘2y"“'h) {30%, 70%} | 93.00 90.75  81.00

Size (T5") {500,2000} | 100.00 100.00 100.00

T; UTKFace Race Classification Proportion of Males (T3"""") {30%, 710%} | 80.50 80.50 82.00
Proportion of Youth (75”"“"') {30%, 70%} | 81.75 87.50  84.00

; ; Size (T,i‘iz") {500, 2000} | 100.00 100.00 100.00

L SE ageiClastiteation Proportion of Males (T,") | {30%,70%) | 80.75 78.00 7225

* PIAs achieve good performance across different pre-trained models
and datasets
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., . PIA Defense
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* With the increase of o
— The effectiveness of PIA significantly declines for naive attacks
—The target performance decreases by a large margin

* Fail to defend against property inference attacks
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Conclusions

* We are the first to conduct comprehensive privacy assessment on
visual prompt learning

* Our empirical evaluation shows that visual prompts are vulnerable

to both membership inference attacks and property inference
attacks

* Adding Gaussian noise to prompts, can mitigate the membership
inference attacks with a decent utility-defense trade-off but fails to
defend against property inference attacks

* Other conclusions can be found out in our paper
— Overfitting affects the attack performance against visual prompt
— Factors that affect these two attacks...
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