

Quantifying Privacy Risks of Prompts in Visual Prompt Learning

Yixin Wu,¹ Rui Wen,¹ Michael Backes,¹ Pascal Berrang,² Mathias Humbert,³ Yun Shen,⁴ Yang Zhang¹

¹ CISPA Helmholtz Center for Information Security

² University of Birmingham ³ University of Lausanne ⁴ NetApp

What is a common method to adapt pre-trained models to specific tasks?

3

As the number of specific tasks gradually increases...

Large-scale pre-trained models are costly to share and serve in the fine-tuning paradigm

A new paradigm is introduced to solve such limitations

- Remain the pre-trained model frozen
- Far fewer parameters are updated
- Easy to share and serve to users

e.g., 20K params

Prompt as a Service (PaaS)

- For users
 - Minimize their effort in developing a prompt
 - Keep their data on premise
 - Easily adapt to different downstream tasks
- For providers
 - Reuse a single pre-trained model to support multiple downstream tasks
 - Less computational resource for training
 - Less storage space
- A well-generalized prompt becomes a valuable asset for PaaS providers

8

• Most previous research about privacy risks has focused on ML models at the model level

[1] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot. Label-Only Membership Inference Attacks. In International Conference on Machine Learning (ICML), pages 19641974. PMLR, 2021.

[2] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-Kirkpatrick. An Empirical Analysis of Memorization in Finetuned Autoregressive Language Models. In Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1816–1826. ACL, 2022.

• Assumption: will prompt learning heavily compress the training dataset information, thus leading to less effective privacy attacks?

- Compared to the fine-tune paradigm, only 0.08% params are updated

Privacy Risks of Prompt Learning

• Assumption: Will prompt learning heavily compress the training dataset information, thus leading to less effective privacy attacks?

Membership Inference Attacks (MIAs)

 Membership inference attacks (MIAs): infer whether a given data sample x was in the training dataset of the target prompt

Figure 6: Attack performance of three membership inference attacks on four datasets.

- Prompts are vulnerable to the membership inference attacks
- Metric-based attacks achieve the best performance in most cases, e.g., 93.20% on AFAD

- Adding Gaussian noise to the prompts
- \bullet This defense mechanism can achieve a decent utility-defense tradeoff when setting $\sigma=0.6$

• Property inference attacks (PIAs): infer confidential properties of the training dataset that the PaaS provider does not intend to share

Table 1: Experimental settings of the property inference attacks with the corresponding attack performance.

Inference Task	Dataset	Downstream	Target	Inference	Test Accuracy		
		Task	Property	Labels	RN18	BiT-M	ViT-B
T_1	CIFAR10	Image Classification	Size (T_1^{size})	{500, 2000}	100.00	100.00	100.00
<i>T</i> ₂	CelebA	Multi-Atrribute Classification	Size (T_2^{size}) Proportion of Males (T_2^{male}) Proportion of Youth (T_2^{youth})	{500, 2000} {30%, 70%} {30%, 70%}	100.00 99.75 93.00	100.00 99.25 90.75	100.00 93.00 81.00
T_3	UTKFace	Race Classification	Size (T_3^{size}) Proportion of Males (T_3^{male}) Proportion of Youth (T_3^{youth})	{500, 2000} {30%, 70%} {30%, 70%}	100.00 80.50 81.75	100.00 80.50 87.50	100.00 82.00 84.00
T_4	AFAD	Age Classification	Size (T_4^{size}) Proportion of Males (T_4^{male})	{500, 2000} {30%, 70%}	100.00 80.75	100.00 78.00	100.00 72.25

• PIAs achieve good performance across different pre-trained models and datasets

- ${\mbox{ \bullet}}$ With the increase of σ
 - The effectiveness of PIA significantly declines for naïve attacks
 - The target performance decreases by a large margin
- Fail to defend against property inference attacks

- We are the first to conduct comprehensive privacy assessment on visual prompt learning
- Our empirical evaluation shows that visual prompts are vulnerable to both membership inference attacks and property inference attacks
- Adding Gaussian noise to prompts, can mitigate the membership inference attacks with a decent utility-defense trade-off but fails to defend against property inference attacks
- Other conclusions can be found out in our paper
 - Overfitting affects the attack performance against visual prompt
 - Factors that affect these two attacks...

Thanks!

Yixin Wu

CISPA Helmholtz Center for Information Security

@yxoh28

https://yxoh.github.io/

