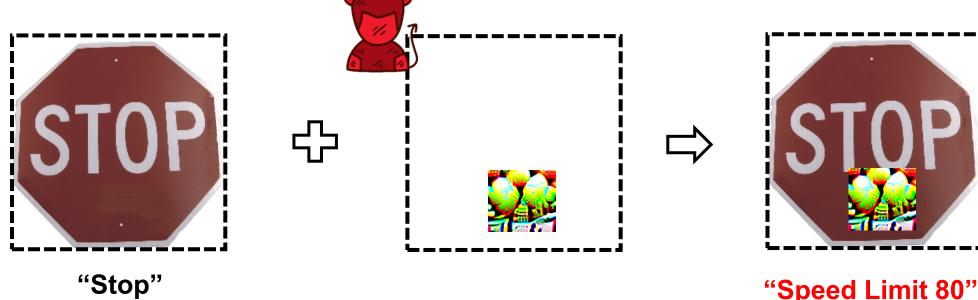
PatchCURE: Improving Certifiable Robustness, Model Utility, and Computation Efficiency of Adversarial Patch Defenses

<u>Chong Xiang</u>¹, Tong Wu¹, Sihui Dai¹, Jonathan Petit², Suman Jana³, Prateek Mittal¹ ¹Princeton University, ²Qualcomm Technologies, Inc., ³Columbia University

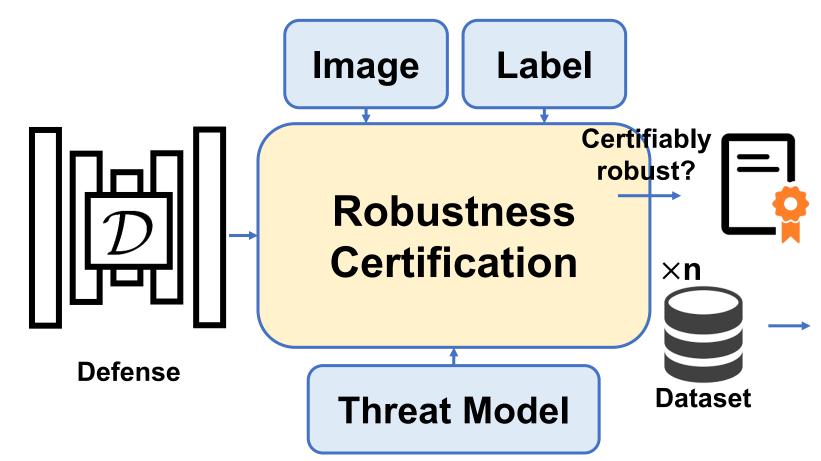
Adversarial Patch: A Variant of Adversarial Examples

- The attacker has arbitrary control over pixels within a localized image region (i.e., a patch region)
- Optimize the patch content to induce misclassification
- Print and attach the patch images taken from that physical scene becomes adversarial



2

Defense Objective: Certifiable Evaluation of Robustness



The model prediction on this image is *always* correct, no matter what a **white-box adaptive** attacker within the threat model does

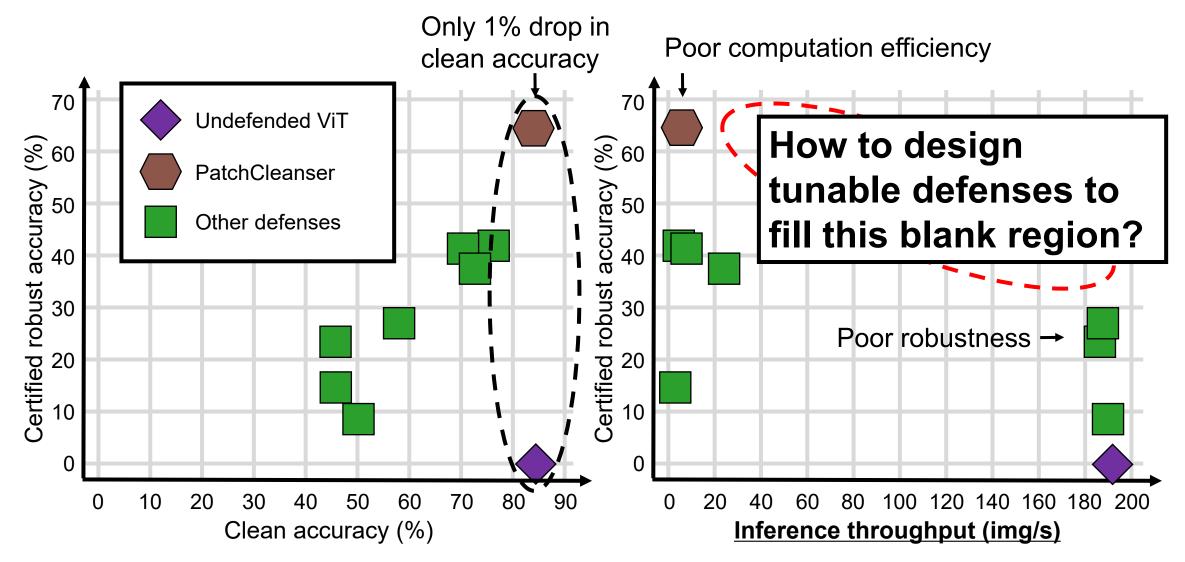
<u>Certified</u> Robust Accuracy: The fraction of images with robustness certificate

A provable lower bound!

(won't be compromised in the future)

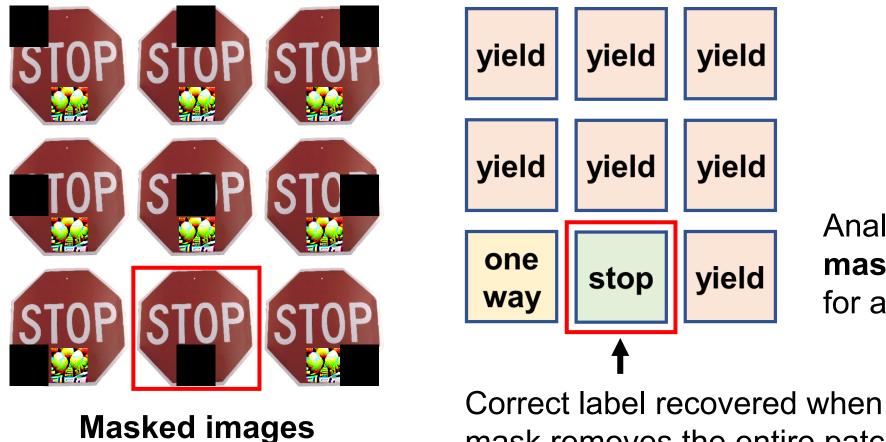
Example: a 32×32 patch on a 224×224 image, at any image location (193² possible cases), with any patch content (2²⁴⁵⁷⁶ possible cases)

State of Research: Performance on ImageNet



Pixel Masking: A Powerful but Computation-intensive Defense

• Insight: when the corruption is localized, we can use a mask to remove it

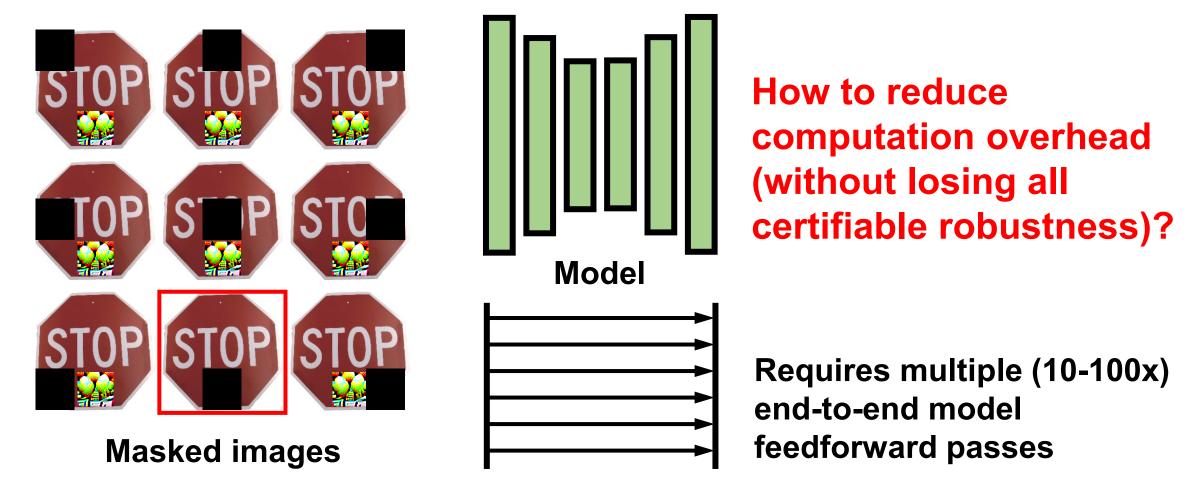


Analyze the **pattern of** masked predictions for a robust prediction

mask removes the entire patch

Pixel Masking: A Powerful but Computation-intensive Defense

• Insight: when the corruption is localized, we can use a mask to remove it



PatchCURE Idea: Feature-space Masking

Insight: Only layers after the masking require repeated computation

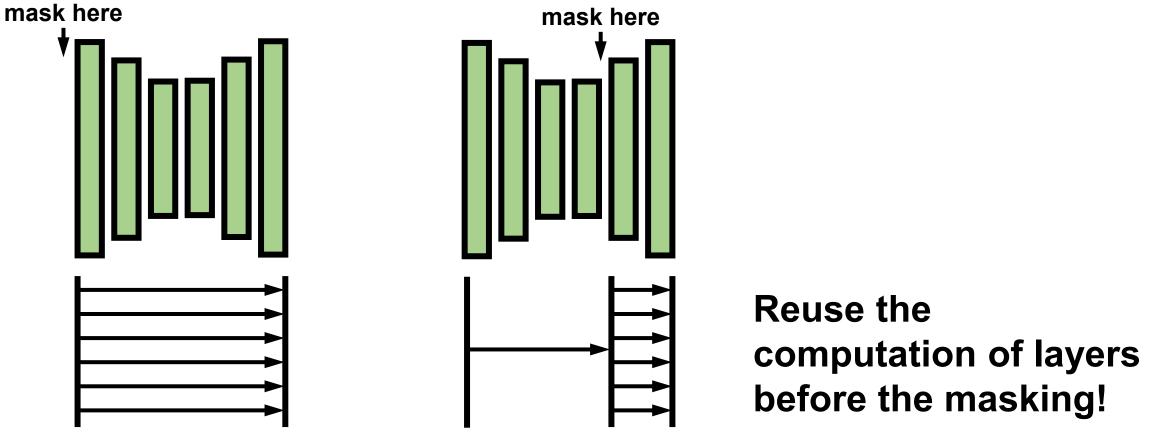
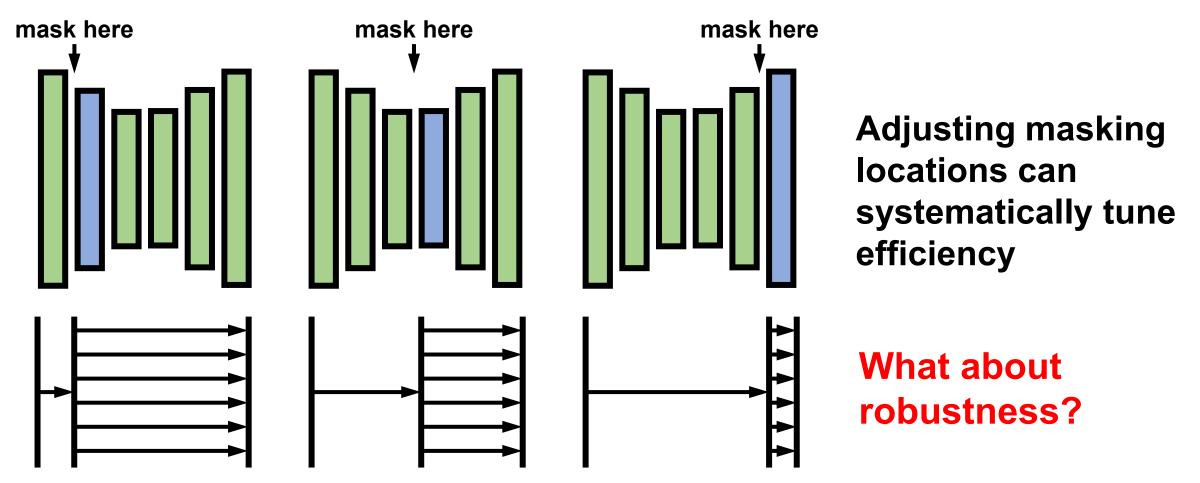


Image-space masking

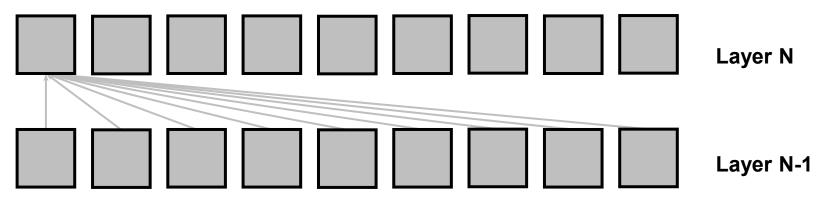
Feature-space masking

PatchCURE Idea: Feature-space Masking

Insight: Only layers after the masking require repeated computation

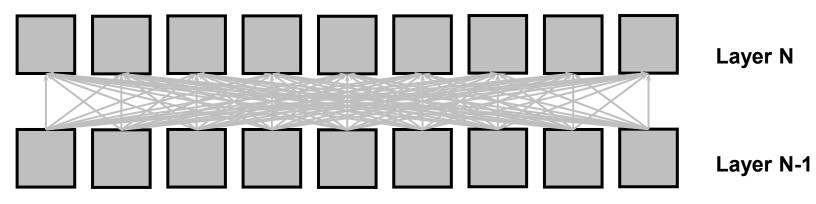


• Example: Global attention in Vision Transformer



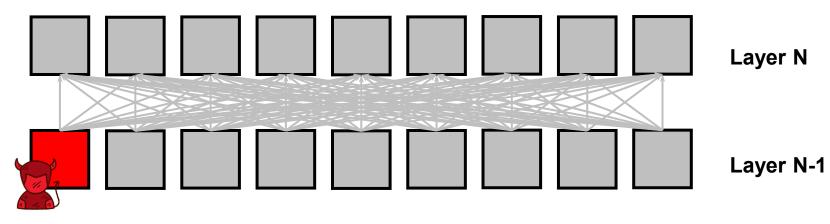
• Every token/feature receives signals from all tokens in the previous layer (global receptive field)

• Example: Global attention in Vision Transformer



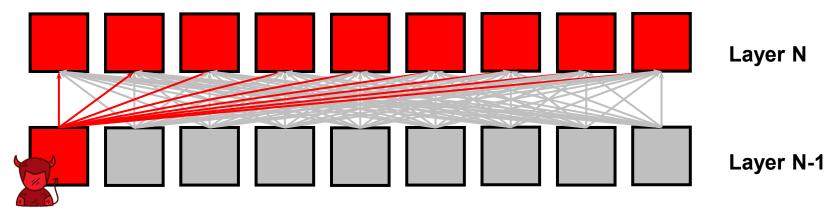
• Every token/feature receives signals from all tokens in the previous layer (global receptive field)

• Example: Global attention in Vision Transformer



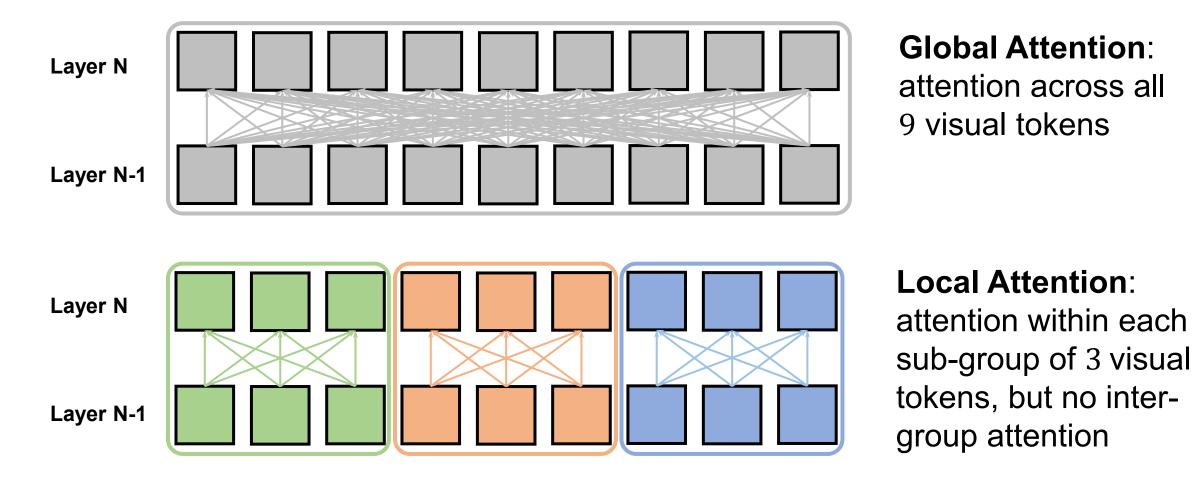
- Every token/feature receives signals from all tokens in the previous layer (global receptive field)
- Large receptive fields can hurt robustness

• Example: Global attention in Vision Transformer

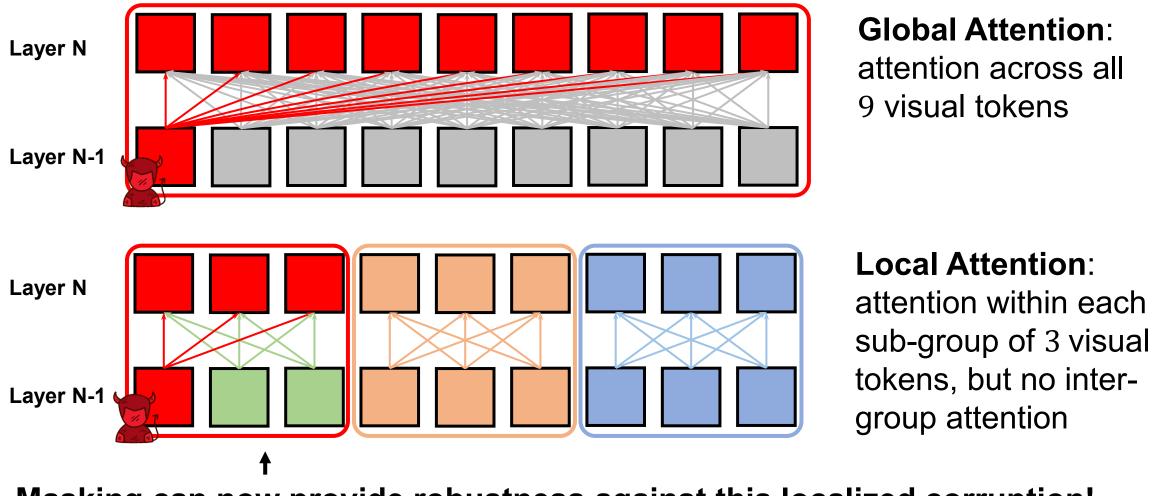


- Every token/feature receives signals from all tokens in the previous layer (global receptive field)
- Large receptive fields can hurt robustness
 - One localized corrupted token/feature can corrupt all tokens/features
 - Corruption is no longer localized! Masking no longer works :(

Solution: Enforcing Small Receptive Fields before Masking

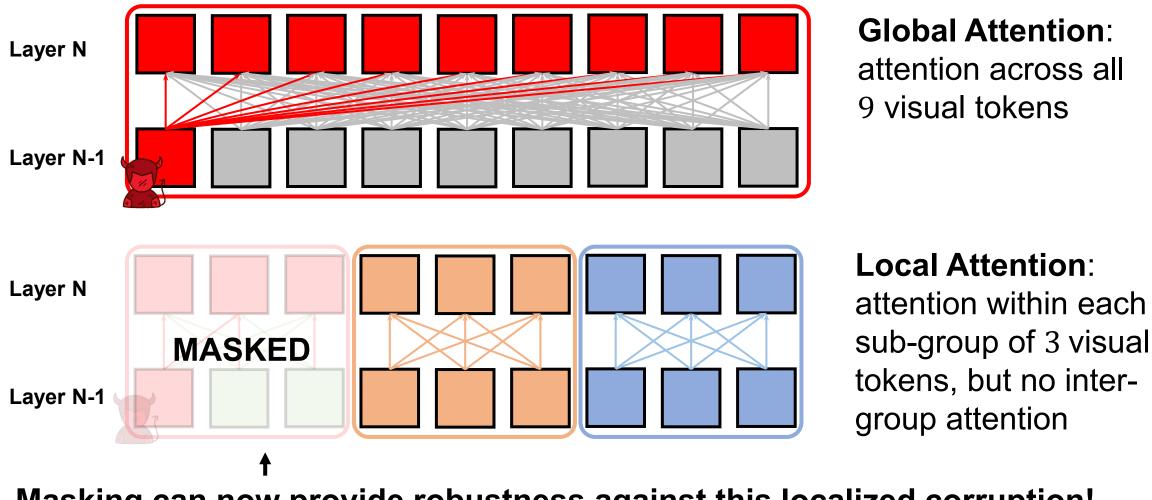


Solution: Enforcing Small Receptive Fields before Masking



Masking can now provide robustness against this localized corruption!

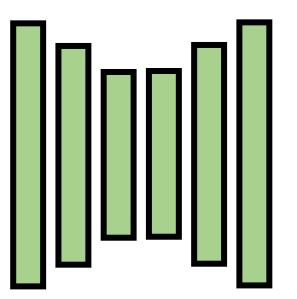
Solution: Enforcing Small Receptive Fields before Masking



Masking can now provide robustness against this localized corruption!

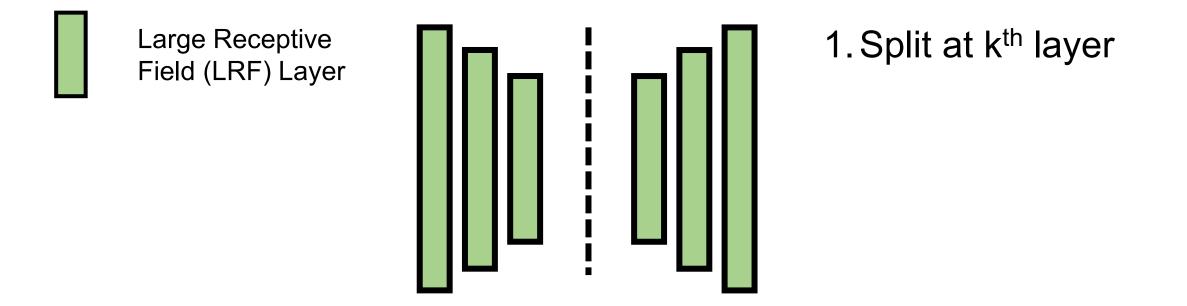
• Convert a vanilla undefended model into a defense model with tunable computation efficiency and certifiable robustness

Large Receptive Field (LRF) Layer

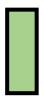


Undefended model

• Convert a vanilla undefended model into a defense model with tunable computation efficiency and certifiable robustness

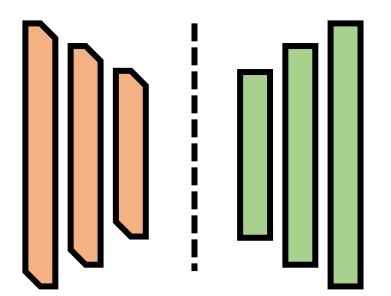


• Convert a vanilla undefended model into a defense model with tunable computation efficiency and certifiable robustness



Large Receptive Field (LRF) Layer

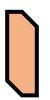
Small Receptive Field (SRF) Layer



 Split at kth layer
Convert LRF to SRF layers

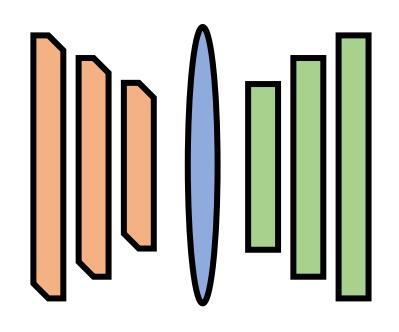
• Convert a vanilla undefended model into a defense model with tunable computation efficiency and certifiable robustness

Large Receptive Field (LRF) Layer



Small Receptive Field (SRF) Layer

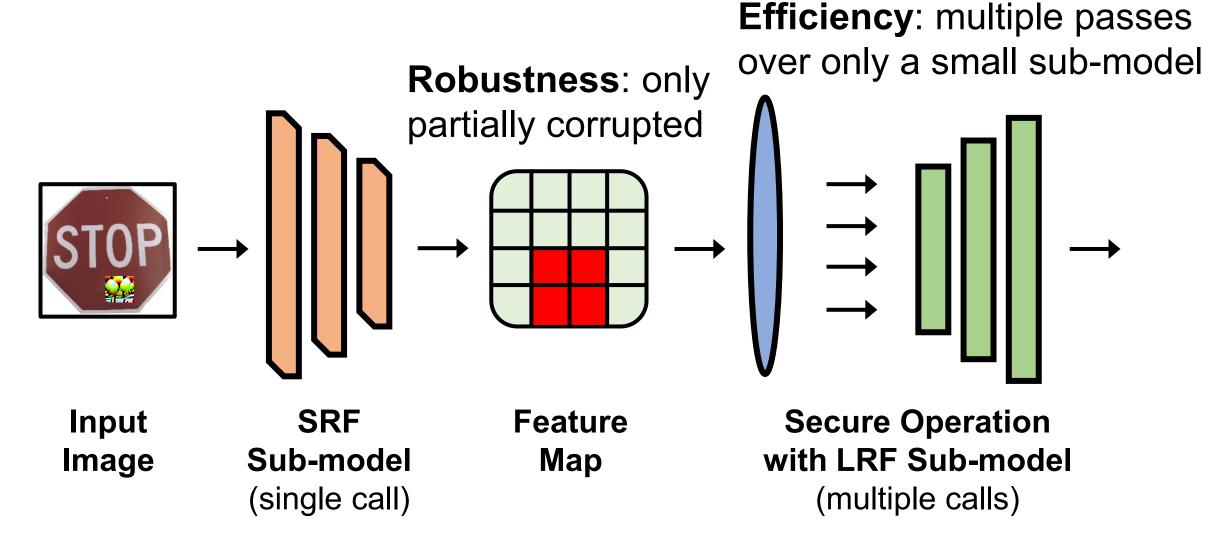
Secure Operation Layer



1. Split at kth layer

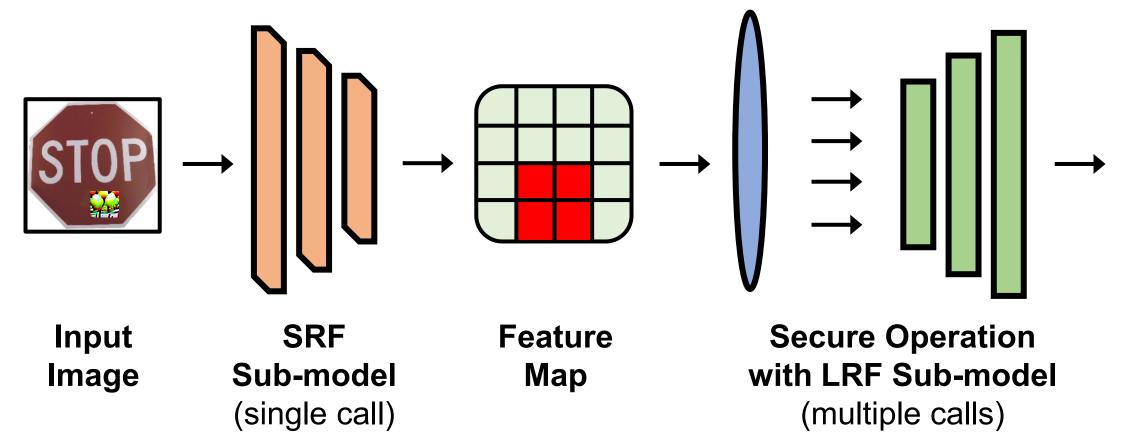
- 2. Convert LRF to SRF layers
- 3. Insert secure operation (e.g., masking-based analysis)

PatchCURE Inference



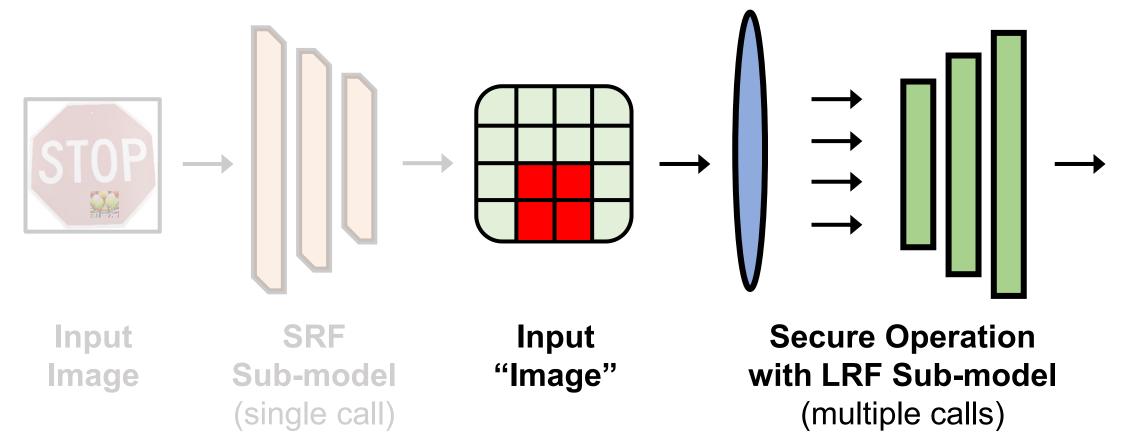
PatchCURE Robustness Certification

 Treat feature map as the input image and directly apply off-the-shelf certification technique

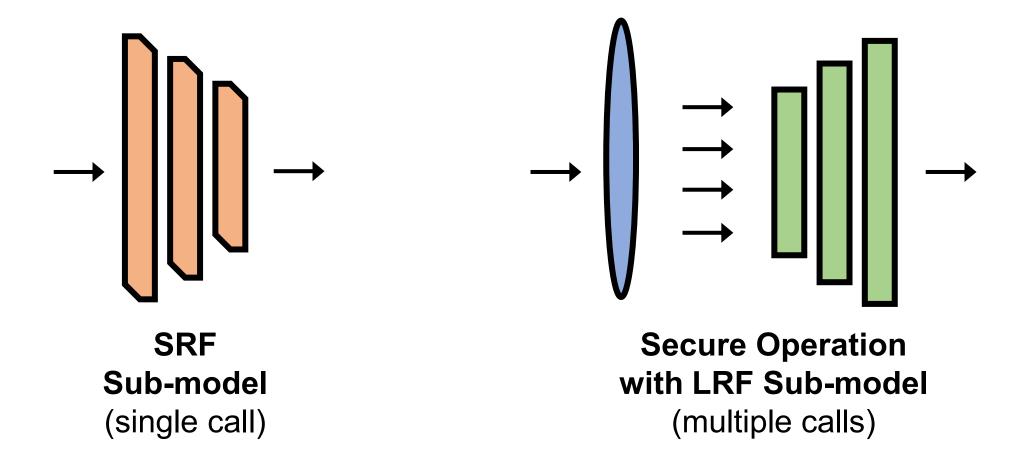


PatchCURE Robustness Certification

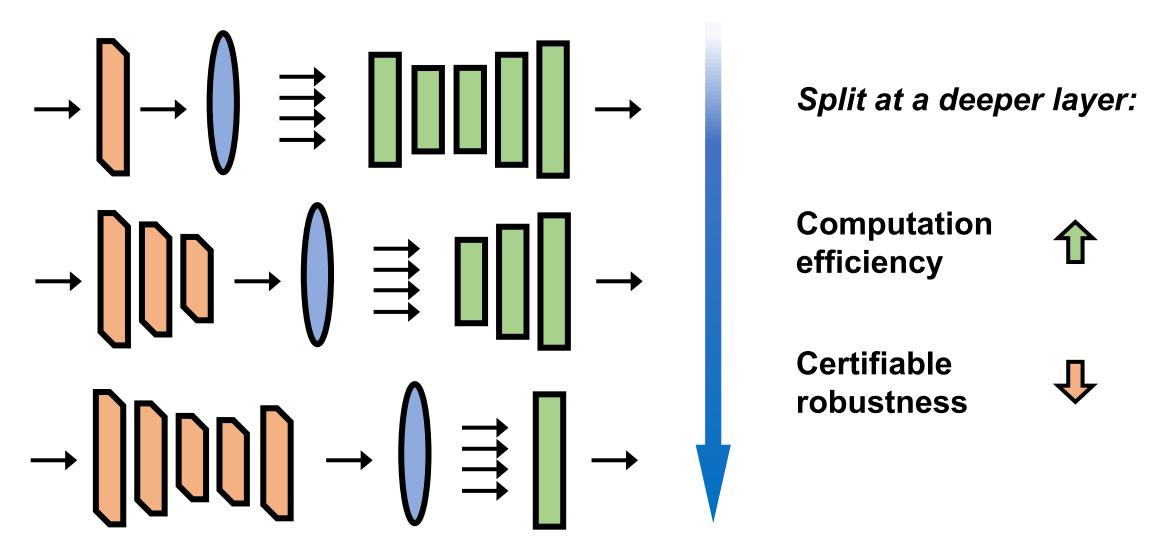
 Treat feature map as the input image and directly apply off-the-shelf certification technique



PatchCURE Pipeline

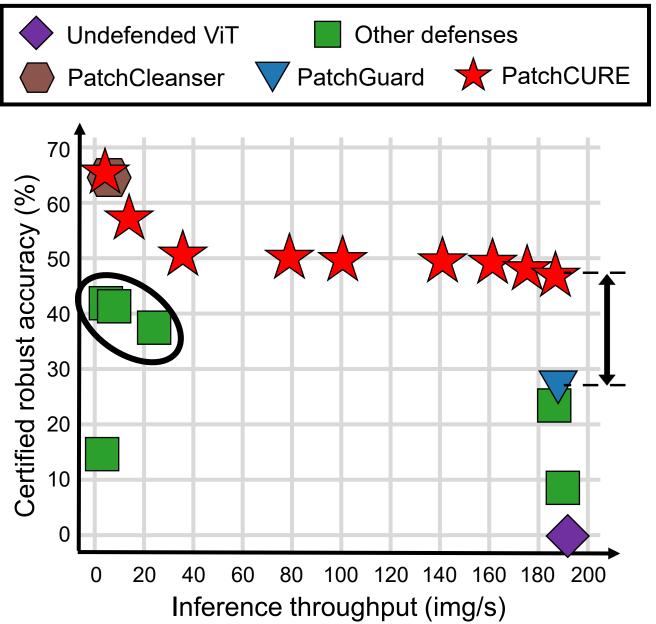


Splitting Layer k Adjust the Defense Performance



ImageNet Evaluation

- Diverse robustness and efficiency
- Best across all efficiency levels
- Large robustness improvement (18%) for efficient defenses
- Efficient PatchCURE instances even outperform many inefficient prior works



PatchCURE: An Extensible and Powerful Framework

Defense	SRF sub-model	LRF sub-model	Secure operation	Splitting layer
PatchCURE	ViT-SRF/BagNet	ViT/ResNet	Double-masking	Any layer
PatchGuard	BagNet	Linear classifier	Robust masking	Last feature layer
PatchCleanser	None	Any model	Double-masking	Input layer
Clipped BagNet	BagNet	Linear classifier	Feature clipping	Last feature layer
Derandomized Smoothing	Pixel bands to ResNet	None	Majority voting	Output layer
PatchGuard++	BagNet	Linear classifier	consistency check	Output layer
BagCert	Modified BagNet	None	Majority voting	Last layer
Randomized Cropping	Cropped images to ResNet	None	Majority voting	Last layer
ScaleCert	First few CNN layers	Remaining CNN layers	"SIN analysis"	First feature layer
Smoothed ViT	Pixel bands to ViT	None	Majority voting	Output layer
ECViT	Pixel bands to ViT	None	Majority voting	Output layer
ViP	Pixel bands to ViT	None	Majority voting	Output layer
Yatsura et al.	Pixel bands	None	Majority voting	Output layer

(and more)

PatchCURE Takeaways

- A defense framework with tunable <u>certifiable robustness and</u> <u>computation efficiency</u>
 - Feature-space defense with a combination of SRF and LRF techniques
 - State-of-the-art robustness across all efficiency levels
 - Subsume all existing defenses that are scalable to full-size ImageNet

