
Yi Xiang, Xuhong Zhang, Peiyu Liu, Shouling Ji, Xiao Xiao, Hong Liang,

Jiacheng Xu, Wenhai Wang

Hangzhou, China

Critical Code Guided Directed Greybox
Fuzzing for Commits

2

Commit Testing is Important

[1] Zhu, Xiaogang, and Marcel Böhme. "Regression greybox fuzzing." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021
[2] https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/.

 Nearly 4/5 bug reports in OSSFuzz are regression bugs [1]

 Regression is initiated when a programmer fixes any bug
or adds a new code for new functionality to the system [2]

3

Commit Testing is Important

 Growing program scale but Limited
availability of resources

 Higher likelihood of newly added code
introducing vulnerabilities

 It is crucial to prioritize fuzzing commit modified code

Characteristics of Commit

 Manually identified the bug-inducing commit (BIC) of
30 real-world bugs, we observe that

4

Characteristics of Commit

 Manually identified the bug-inducing commit (BIC) of
30 real-world bugs, we observe that
 the crash site often differ from the commit change site

5

Characteristics of Commit

 Manually identified the bug-inducing commit (BIC) of
30 real-world bugs, we observe that
 the crash site often differ from the commit change site

 the BIC often contains multiple change sites

6

Characteristics of Commit

 Manually identified the bug-inducing commit (BIC) of
30 real-world bugs, we observe that
 the crash site often differ from the commit change site

 the BIC often contains multiple change sites

existing directed greybox fuzzers encounter several problems

Distance-based DGF:
ALFGo (CCS’17)

Reachability-based DGF:
Beacon (S&P’22)

[3] Böhme, Marcel, et al. "Directed greybox fuzzing." Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2017.
[4] Huang, Heqing, et al. "Beacon: Directed grey-box fuzzing with provable path pruning." 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.

7

Deficiency of Existing DGFs

 Focusing on reaching the target (change site) quickly, but neglecting thorough
testing of affected code

 The crash site often differ from the commit change site

8

Deficiency of Existing DGFs

 Failure to detect newly introduced vulnerabilities

 Focusing on reaching the target (change site) quickly, but neglecting thorough
testing of affected code

 The crash site often differ from the commit change site

9

Deficiency of Existing DGFs

 Failure to detect newly introduced vulnerabilities

 Focusing on reaching the target (change site) quickly, but neglecting thorough
testing of affected code

 Struggle to effectively address the multi-targets issue

 The crash site often differ from the commit change site

 The BIC often contains multiple change sites

10

Deficiency of Existing DGFs

 Failure to detect newly introduced vulnerabilities

 Focusing on reaching the target (change site) quickly, but neglecting thorough
testing of affected code

 Struggle to effectively address the multi-targets issue

 Degrading to coverage-based fuzzing, lacking guidance

 The crash site often differ from the commit change site

 The BIC often contains multiple change sites

 Disregarding connections between change sites, less efficient

11

Challenges

 How to quickly and thoroughly test the affected code?

 How to handle multiple site changes in a smart and lightweight manner?

12

Challenges

 How to quickly and thoroughly test the affected code?

 How to handle multiple site changes in a smart and lightweight manner?

 first efficiently reach the change site (target)

 maintain the reachability, and then generate diverse inputs to explore different
program states of the affected code

 guarantee the directness of each grouped target

13

Methodology

A critical code guided directed fuzzer for commit.
 Group targets and calculate distance

 Identify critical code and guide input generation strategy

14

Critical Code Guided Fuzzing

A critical code guided directed fuzzer for commit.

 Path-prefix code: a, b, e, and f
 Data-suffix code: i and k

15

 Identify Critical Code

Critical Code Guided Fuzzing

A critical code guided directed fuzzer for commit.

 Path-prefix code: a, b, e, and f
 Data-suffix code: i and k

16

 Identify Critical Code

Critical Code Guided Fuzzing

A critical code guided directed fuzzer for commit.

 Path-prefix code: a, b, e, and f
 Data-suffix code: i and k (only consider

written variable x)

17

 Identify Critical Code

Critical Code Guided Fuzzing

A critical code guided directed fuzzer for commit.

 Path-prefix code: a, b, e, and f
 Data-suffix code: i and k (only consider

written variable x)

18

 Identify Critical Code

[5] https://github.com/SVF-tools/SVF

A critical code guided directed fuzzer for commit.

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Key insight: preserving the execution of the
critical code, while generating diverse testcases

Critical Code Guided Fuzzing

19

 Data-suffix code: i and k (only consider
written variable x)

 Identify Critical Code

A critical code guided directed fuzzer for commit.

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Select target edge based on execution status

 Key insight: preserving the execution of the
critical code, while generating diverse testcases

Critical Code Guided Fuzzing

seed A: a→b→e→f→m, target edge: eef, ebe, eab

20

 Data-suffix code: i and k (only consider
written variable x)

 Identify Critical Code

A critical code guided directed fuzzer for commit.

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Select target edge based on execution status

 Key insight: preserving the execution of the
critical code, while generating diverse testcases

Critical Code Guided Fuzzing

seed A: a→b→e→f→m, target edge: eef, ebe, eab

21

 Data-suffix code: i and k (only consider
written variable x)

 Identify Critical Code

A critical code guided directed fuzzer for commit.

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Select target edge based on execution status

 Key insight: preserving the execution of the
critical code, while generating diverse testcases

22

seed B: a→b→e→g→i→j→l, target edge: eeg, ebe, eab , egi

 Data-suffix code: i and k (only consider
written variable x)

seed A: a→b→e→f→m, target edge: eef, ebe, eab

 Identify Critical Code

Critical Code Guided Fuzzing

A critical code guided directed fuzzer for commit.

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Select target edge based on execution status

 Key insight: preserving the execution of the
critical code, while generating diverse testcases

23

 Data-suffix code: i and k (only consider
written variable x)

seed B: a→b→e→g→i→j→l, target edge: eeg, ebe, eab , egi

seed A: a→b→e→f→m, target edge: eef, ebe, eab

 Identify Critical Code

Critical Code Guided Fuzzing

A critical code guided directed fuzzer for commit.
 Identify Critical Code

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Select target edge based on execution status

 Use mutation masks to sustain target edge
execution

 Key insight: preserving the execution of the
critical code, while generating diverse testcases

24

 Data-suffix code: i and k (only consider
written variable x)

seed B: a→b→e→g→i→j→l, target edge: eeg, ebe, eab , egi

seed A: a→b→e→f→m, target edge: eef, ebe, eab

Critical Code Guided Fuzzing

Commit Fuzzer

A critical code guided directed fuzzer for commit.
 Group targets based on the same preconditions (within the same function)

25

Commit Fuzzer

A critical code guided directed fuzzer for commit.
 Group targets based on the same preconditions (within the same function)

 Calculate input distance for the rarest executed target (similar with AFLGo)

26

Effectiveness of Bug Reproducing

How effective is WAFLGO in discovering bugs introduced by commits?

 WAFLGo effectively reproduces 21/30, achieving the highest success rate among all the fuzzers

 WAFLGO achieves an average speedup of 10.3× compared to others in reproducing bug time

27

Coverage Improvement

Does the guidance toward critical code improve the efficiency of fuzzing?

 WAFLGO demonstrates an average 11.7% increase in edge coverage and nearly 2× (181.5%)
more path discoveries compared to AFLGo after 24 hours.

28

Multi-target Case

Does the multi-target optimizations improve the efficiency of fuzzing?

 Case study:
For issue #1289, AFLGo overlooks target 0, while the seed distribution in FishFuzz[4] is similar

to that of WAFLGO.

[6] Zheng, Han, et al. "FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets." 32nd USENIX Security Symposium (USENIX Security 23). 2023. 29

Real-world Vulnerabilities

Can WAFLGO detect new vulnerabilities in real-world programs?

 WAFLGO discover seven new bugs, including four CVEs.

 Case study:
The CVE-2023-34631 is introduced by the fixing commit (6678ad8) for the CVE-2023-34630.

30

Critical Code Guided Directed Greybox Fuzzing for Commits
Real World Dataset

 Crash site often differ from the commit change site
 BIC often contains multiple change sites

Summary of WAFLGo

Fuzzing framework for program commit

Experimental Result

• Highest bug reproduction
success rate

• Average speedup of 10.3x
• Seven new bugs, 4 CVEs

31

Email Address:
xiangyi0406@zju.edu.cn

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	Critical Code Guided Directed Greybox Fuzzing for Commits

