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Commit Testing is Important

[1] Zhu, Xiaogang, and Marcel Böhme. "Regression greybox fuzzing." Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2021
[2] https://www.softwaretestinghelp.com/regression-testing-tools-and-methods/.

 Nearly 4/5 bug reports in OSSFuzz are regression bugs [1]

 Regression is initiated when a programmer fixes any bug 
or adds a new code for new functionality to the system [2]
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Commit Testing is Important

 Growing program scale but Limited 
availability of resources

 Higher likelihood of newly added code 
introducing vulnerabilities

 It is crucial to prioritize fuzzing commit modified code



Characteristics of Commit

 Manually identified the bug-inducing commit (BIC) of 
30 real-world bugs, we observe that
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Characteristics of Commit

 Manually identified the bug-inducing commit (BIC) of 
30 real-world bugs, we observe that
 the crash site often differ from the commit change site

 the BIC often contains multiple change sites

existing directed greybox fuzzers encounter several problems

Distance-based DGF: 
ALFGo (CCS’17)

Reachability-based DGF:
Beacon (S&P’22)

[3] Böhme, Marcel, et al. "Directed greybox fuzzing." Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2017.
[4] Huang, Heqing, et al. "Beacon: Directed grey-box fuzzing with provable path pruning." 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.
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Deficiency of Existing DGFs

 Focusing on reaching the target (change site) quickly, but neglecting thorough 
testing of affected code

 The crash site often differ from the commit change site
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Deficiency of Existing DGFs

 Failure to detect newly introduced vulnerabilities

 Focusing on reaching the target (change site) quickly, but neglecting thorough 
testing of affected code

 Struggle to effectively address the multi-targets issue

 Degrading to coverage-based fuzzing, lacking guidance

 The crash site often differ from the commit change site

 The BIC often contains multiple change sites

 Disregarding connections between change sites, less efficient
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Challenges

 How to quickly and thoroughly test the affected code?

 How to handle multiple site changes in a smart and lightweight manner?
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Challenges

 How to quickly and thoroughly test the affected code?

 How to handle multiple site changes in a smart and lightweight manner?

 first efficiently reach the change site (target)

 maintain the reachability, and then generate diverse inputs to explore different 
program states of the affected code

 guarantee the directness of each grouped target
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Methodology

A critical code guided directed fuzzer for commit.
 Group targets and calculate distance

 Identify critical code and guide input generation strategy
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Critical Code Guided Fuzzing
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 Identify Critical Code

[5] https://github.com/SVF-tools/SVF



A critical code guided directed fuzzer for commit.

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Key insight: preserving the execution of the 
critical code, while generating diverse testcases
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A critical code guided directed fuzzer for commit.

 Input Generation Strategy
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Critical Code Guided Fuzzing

seed A: a→b→e→f→m, target edge: eef, ebe, eab
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seed B: a→b→e→g→i→j→l, target edge: eeg, ebe, eab , egi

 Data-suffix code: i and k (only consider 
written variable x) 

seed A: a→b→e→f→m, target edge: eef, ebe, eab
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 Data-suffix code: i and k (only consider 
written variable x) 
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A critical code guided directed fuzzer for commit.
 Identify Critical Code

 Input Generation Strategy

 Path-prefix code: a, b, e, and f

 Select target edge based on execution status

 Use mutation masks to sustain target edge 
execution

 Key insight: preserving the execution of the 
critical code, while generating diverse testcases
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 Data-suffix code: i and k (only consider 
written variable x) 

seed B: a→b→e→g→i→j→l, target edge: eeg, ebe, eab , egi

seed A: a→b→e→f→m, target edge: eef, ebe, eab

Critical Code Guided Fuzzing



Commit Fuzzer

A critical code guided directed fuzzer for commit.
 Group targets based on the same preconditions (within the  same function)
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Commit Fuzzer

A critical code guided directed fuzzer for commit.
 Group targets based on the same preconditions (within the  same function)

 Calculate input distance for the rarest executed target (similar with AFLGo)
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Effectiveness of Bug Reproducing

How effective is WAFLGO in discovering bugs introduced by commits?

 WAFLGo effectively reproduces 21/30, achieving the highest success rate among all the fuzzers

 WAFLGO achieves an average speedup of 10.3× compared to others in reproducing bug time
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Coverage Improvement

Does the guidance toward critical code improve the efficiency of fuzzing?

 WAFLGO demonstrates an average 11.7% increase in edge coverage and nearly 2× (181.5%) 
more path discoveries compared to AFLGo after 24 hours.
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Multi-target Case

Does the multi-target optimizations improve the efficiency of fuzzing?

 Case study: 
For issue #1289, AFLGo overlooks target 0, while the seed distribution in FishFuzz[4] is similar 

to that of WAFLGO.

[6] Zheng, Han, et al. "FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets." 32nd USENIX Security Symposium (USENIX Security 23). 2023. 29



Real-world Vulnerabilities

Can WAFLGO detect new vulnerabilities in real-world programs?

 WAFLGO discover seven new bugs, including four CVEs.

 Case study: 
The CVE-2023-34631 is introduced by the fixing commit (6678ad8) for  the CVE-2023-34630.
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Critical Code Guided Directed Greybox Fuzzing for Commits
Real World Dataset

 Crash site often differ from the commit change site
 BIC often contains multiple change sites

Summary of WAFLGo

Fuzzing framework for program commit

Experimental Result

• Highest bug reproduction 
success rate

• Average speedup of 10.3x
• Seven new bugs, 4 CVEs
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Email Address: 
xiangyi0406@zju.edu.cn
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