POINTERGUESS: Targeted Password Guessing Model using Pointer Mechanism

Kedong Xiu

Nankai University kedongxiu@mail.nankai.edu.cn

Ding Wang Nankai University wangding@nankai.edu.cn

Textual Passwords

- Easy to use
- Low cost
- Easy to change

Password still remains its dominance in the future

Credential Stuffing Attack: A realistic threat for online users

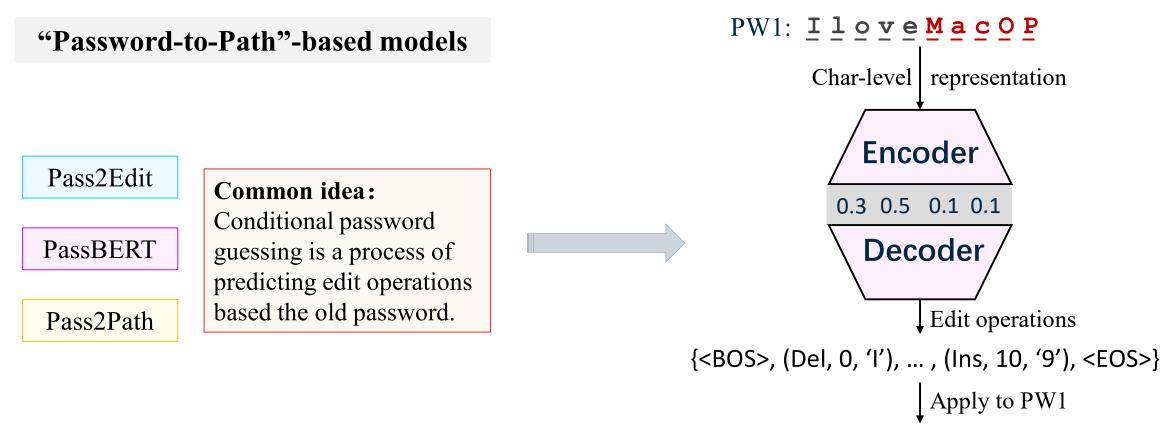
- Web users have **80-107 (avg.)** passwords^[2].
- **58%~79%** users directly reuse or slightly modify their existing passwords ^[3-6].
- Latest DBIR reports that **77%** web attack is credential stuffing attack^[1].

Username	Password		Username	Password	
Jack	lloveMacOP		Jack	MacOP5789	
		Attacker			
Leaked	Dataset		Target	Server	

[1] https://www.verizon.com/business/de-de/resources/reports/2024/dbir/2024-dbir-data-breach-investigations-report.pdf

- [2] https://www.lastpass.com/resources/ebook/psychology-of-passwords-2021
- [3] https://www.zdnet.com/article/google-launches-password-checkup-feature-will-add-it-to-chrome-later-this-year/
- [4] https://services.google.com/fh/files/blogs/google_security_infographic.pdf
- [5] Beyond Credential Stuffing: Password Similarity Models Using Neural Networks
- [6] fuzzyPSM: A New Password Strength Meter Using Fuzzy Probabilistic Context-Free Grammars

Prior work



PW2: <u>MacOP5789</u>

1. Existing models need to filter training set while overlooking similar password pairs

User	PW1	PW2	Edit distance	Cosine similarity
A	3080124	cooper3080124	4 🗸	0.71 🗸
В	720710	720710720710	6 🗙	0.95 🗸
С	lloveMacOP	MACOP	7 🗙	0.25 ×
D	iloveu4ever	ILOVEU4EVER	10 ×	0 🗙

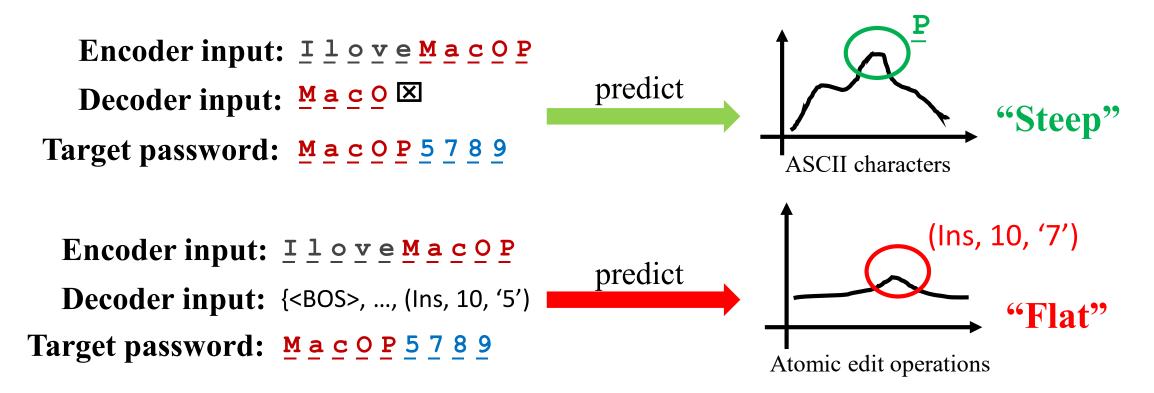
- Pass2Path uses **edit distance >= 4** to filter training set
- Pass2Edit users **cosine similarity > 0.3** to filter training set

- 1. Existing models need to filter training set while overlooking similar password pairs
- 2. Heuristic method to mix popular passwords

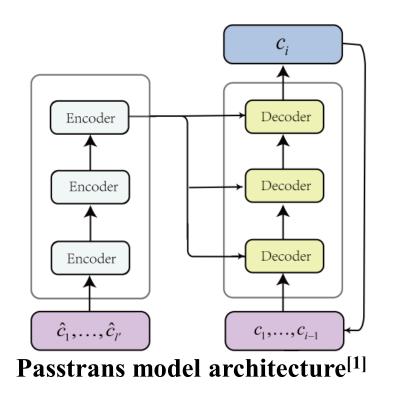
Output Prob (exponential)	Tweaked Prob (exponential)	Password		Prob (exponential)	Password		Prob (exponential)	Password
-2.39	-3.74	wang12		-3.14	12345678	←	-3.14	12345678
-2.71	-4.06	wang	\backslash	-3.28	123456789	←	-3.28	123456789
-3.07	-4.42	wang1		-3.74	wang12		-4.41	11111111
-3.96	-5.31	123		-4.06	wang		-4.93	dearbook
Beam Search Result Mixed Password List Popular Passwords Figure 4 in [1]								

[1] Ding Wang, Yunkai Zou, Yuan-an Xiao, Siqi Ma and Xiaofeng Chen, "Pass2Edit: A Multi-Step Generative Model for Guessing Edited Passwords", in Proc. USENIX SEC 2023

- 1. Existing models need to filter training set while overlooking similar password pairs
- 2. Heuristic method to mix popular passwords
- 3. The large number of atomic edit operations

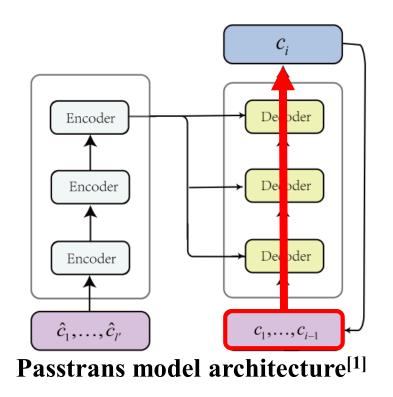


- 1. Existing models need to filter training set while overlooking similar password pairs
- 2. Heuristic method to mix popular passwords
- 3. The large number of atomic edit operations
- 4. The inefficient utilization of the old password
 - Only **generate** "new" characters based on the model
 - **Overlook** the copy operation from the old password



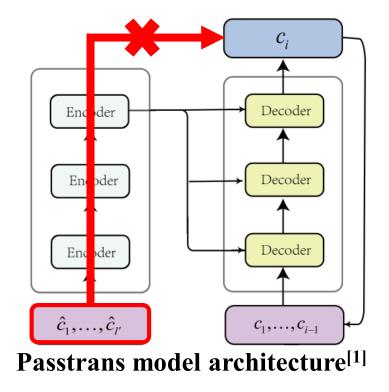
[1] Xiaoxi He, Haibo Cheng, Jiahong Xie, Ping Wang, Kaitai Liang, "Passtrans: An Improved Password Reuse Model Based on Transformer", in Proc. ICASSP 2022.

- 1. Existing models need to filter training set while overlooking similar password pairs
- 2. Heuristic method to mix popular passwords
- 3. The large number of atomic edit operations
- 4. The inefficient utilization of the old password
 - Only **generate** "new" characters based on the model
 - **Overlook** the copy operation from the old password



[1] Xiaoxi He, Haibo Cheng, Jiahong Xie, Ping Wang, Kaitai Liang, "Passtrans: An Improved Password Reuse Model Based on Transformer", in Proc. ICASSP 2022.

- 1. Existing models need to filter training set while overlooking similar password pairs
- 2. Heuristic method to mix popular passwords
- 3. The large number of atomic edit operations
- 4. The inefficient utilization of the old password
 - Only **generate** "new" characters based on the model
 - **Overlook** the copy operation from the old password



[1] Xiaoxi He, Haibo Cheng, Jiahong Xie, Ping Wang, Kaitai Liang, "Passtrans: An Improved Password Reuse Model Based on Transformer", in Proc. ICASSP 2022.

- 1. Existing models need to filter training set while overlooking similar password pairs
- 2. Heuristic method to mix popular passwords
- 3. The large number of atomic edit operations
- 4. The inefficient utilization of the old password

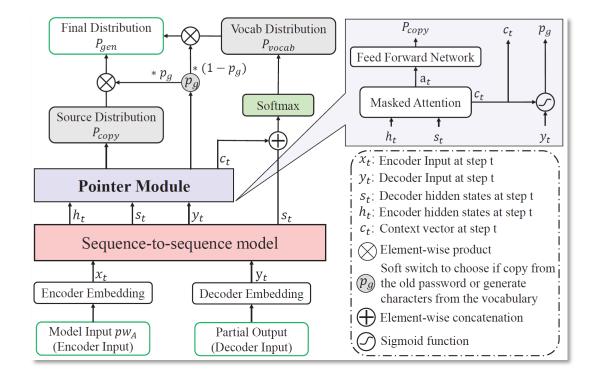
Our work

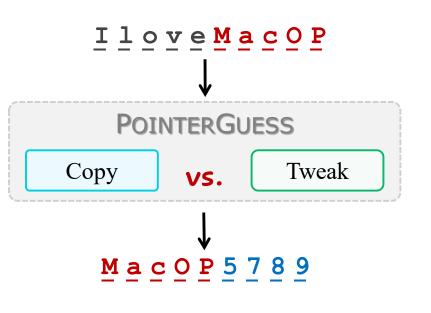
- **Directly predict character sequence of the target password**
- □ Model a new conditional password guessing probability
- Consider both copying characters from the old password and generating new characters

POINTERGUESS: Targeted Password Guessing Model

Modeling new conditional password guessing probability

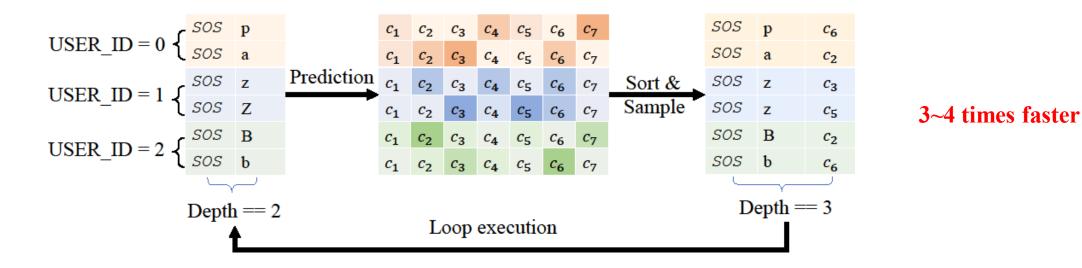
- Directly **copy** characters from pw_A , i.e., $P_{copy} = FFN\left(\sum_{\{j:c_j=c\}} a_j^i\right)$
- Generate characters based on pw_A , i.e., $P_{vocab} = softmax(W' * (W * [s_t, c_t] + b_{out}) + b'_{out})$
- Weighted-sum two conditional probabilities, i.e., $P_{gen} = p_g * P_{copy} + (1 p_g) * P_{vocab}$





Facilitate password generation

- □ Implement Batch beam search algorithm for password generation
 - Choose the **batch size** before generating guesses.
 - Set the **global topK guesses** for each user (e.g., 1000 guesses every user).
 - Set the **local topK candidates** for every generation (e.g., 7 candidates).



Experimental setup

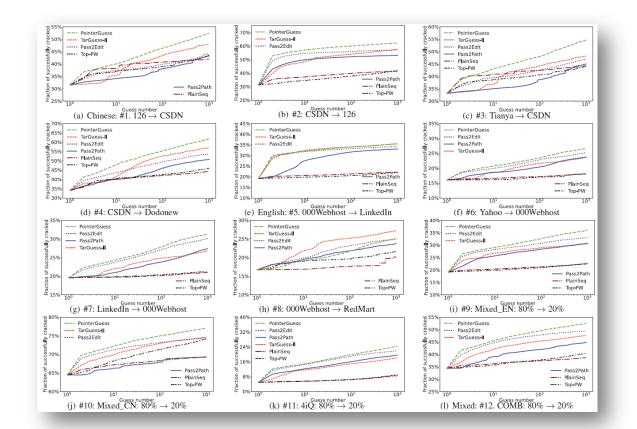
- □ Attack scenario construction
 - 11 real-world datasets (4 Chinese datasets, 5 English datasets and 2 large-scale mixed datasets)
 - 4 attack scenarios for Chinese and English, respectively
 - 4 large-scale attack scenarios
- **D** Experiment environment
 - Running on NVIDIA RTX 3090 (24 GB of vRAM)

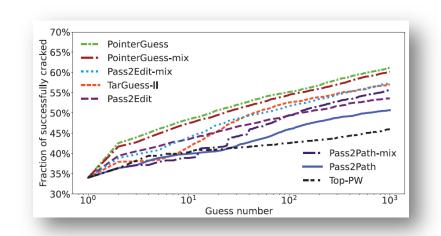
• Randomly select 20,000 password pairs as test set

#. Attack scenario	Language	Training set setup	Size (pairs)	Testing set setup	Size (pairs)	Clean strategies [†]
#1. $126 \rightarrow \text{CSDN}$	Chinese	$126 \rightarrow \text{Dodonew}$	188,926	$126 \rightarrow \text{CSDN}$	85,206	Len≥8
#2. CSDN \rightarrow 126	Chinese	$CSDN \rightarrow Dodonew$	211,385	$CSDN \rightarrow 126$	86,104	Basic
#3. Tianya \rightarrow CSDN	Chinese	Tianya \rightarrow Dodonew	434,255	Tianya \rightarrow CSDN	826,559	Len≥8
#4. CSDN \rightarrow Dodonew	Chinese	$\text{CSDN} \rightarrow 126$	86,104	$CSDN \rightarrow Dodonew$	211,385	Basic
#5. 000Webhost \rightarrow LinkedIn	English	$000Webhost \rightarrow Yahoo$	265,083	$000Webhost \rightarrow LinkedIn$	213,697	Len ₂₆
#6. Yahoo \rightarrow 000Webhost	English	$Yahoo \rightarrow LinkedIn$	40,646	Yahoo $\rightarrow 000$ Webhost	37,479	LD
#7. LinkedIn \rightarrow 000Webhost	English	LinkedIn \rightarrow Yahoo	40,812	LinkedIn \rightarrow 000Webhost	259,175	LD, Len≥6
#8. 000Webhost \rightarrow RedMart	English	000Webhost \rightarrow Linkedin	213,697	$000Webhost \rightarrow RedMart$	6,858	Len≥6
#9. 80% Mixed_EN \rightarrow 20% Mixed_EN	English	80% of Mixed_EN	338,857	20% of Mixed_EN	84,714	Basic
#10. 80% Mixed_CN \rightarrow 20% Mixed_CN	Chinese	80% of Mixed_CN	434,255	20% of Mixed_CN	108,564	Basic
#11. 80% $4iQ \rightarrow 20\% 4iQ$	Mixed	80% of 4iQ dataset	116,837,808	20 % 4iQ dataset	29,209,452	Basic
#12. 80% COMB \rightarrow 20% COMB	Mixed	80% of COMB	342,921,727	20 % COMB dataset	85,730,432	Basic

Experimental results

Within 100 guesses, the average success rate of POINTERGUESS is 21.23%~71.54% (38.37% on average) higher than its foremost counterparts.
 POINTERGUESS inherently owns the ability of generating popular passwords.
 POINTERGUESS is 3~4 times faster than other models while generating guesses.



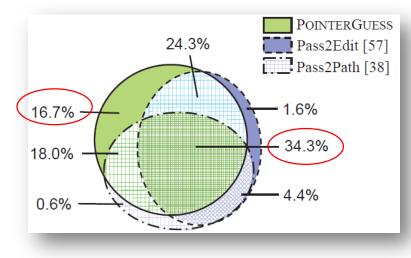


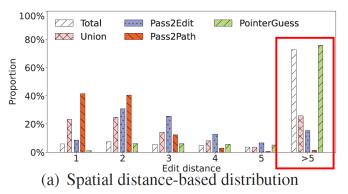
Attack model	POINTERGUESS	Pass2Edit [57]	Pass2Path [38]
Training time	15:14	09:43	14:10
Testing time	00:24	02:26	01:47
Speed [‡] (pw/s)	9,700~9,800	2,100~2,200	2,900~3,000
Model size (MB)	2.26	11	53.6

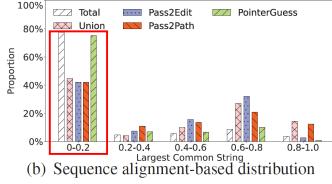
Experiment analysis

• Overall analysis

Models	POINTER	Pass2Ed	it [57]	Pass2Path [38]		
Index	Old password	Target password	Old password	Target password	Old password	Target password
1	852255685145294	abc123	MCfaraona020591	mcfaraona91	8841800lin	lin8841800lin
2	boy78697740	boy123456789	edwardcullenqwe	Edwardcullen	jangobango88	jangobango1988
3	kazeevatanyuffka872ghbrjyf	kazeevatanyuffka	Castor	Castor08	13197277038	131w97277038
4	katmarlzelda969	katmarlzelda969@yahoo.com	4.14495E	4.14495E+13	IloveYOU2998	iloveyou2998
5	ghostgamer-2001	ghostgamer-2001@hotmail.com	t0romerda.	toromerda	SAIIIOK	sailiok
6	uuDBUMDM5NApOzYW	qweasdzxc	UHJVuhjvbr49	Uhjvuhjvbr49	wgpfuqd861208	wgpfUQD861208
7	jaydiltddasilva@partners.org	jaydilla1	30061986123	30061986qwe	rajuraju	raju2raju
8	102457685&	102457685!!	WMOOLMAN1058	WMOOLMAN	drdeath	1DRDEATH
9	1991322322	1.99132E+12	RBV//1960	rbl//1960	samantha	s@mantha
10	6125251987110	6.12525E+12	SharmaHellV1.0	HellV1.0	liljojo202	liljojo120

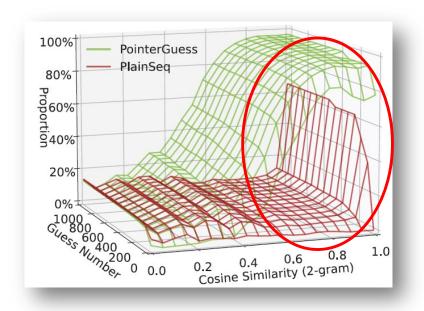




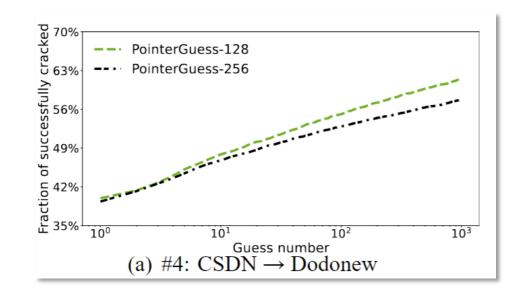


Experiment analysis

□ Ablation study



- Create unique passwords
 E.g., 585129wupan → 585129
- Larger **similarity differences** between password pairs



• Model dimension **barely impacts** the model performance

Question:

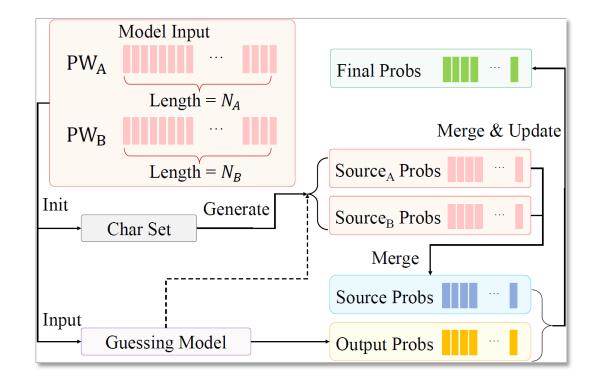
Can we use each victim's multiple leaked passwords?

Answer:

YES! Why not?

Extensive work

MS-POINTERGUESS: Password Guessing Model based on Multi-Encoder Module



- Employ the pointer mechanism.
- Multiple encoders **parallel** process multiple old passwords for each user.
- Different encoders are assigned weight vectors that **sum up to 1**.

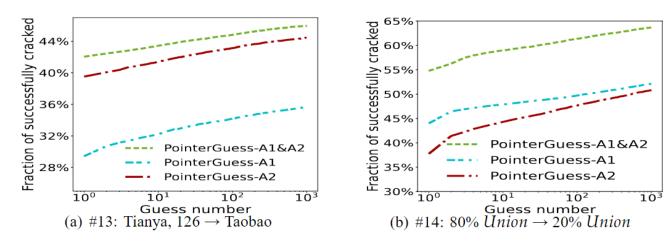
Extensive work

D Experiment setup

- Six datasets (Tianya, 126, Taobao, Clixsense, LiveAuctioneers and 4iQ)
- Two attack scenarios #13 and #14

#13A. Tianya, $126 \rightarrow$ Taobao #13B. Tianya \rightarrow Taobao #13C. 126 \rightarrow Taobao	Chinese	Tianya, $126 \rightarrow Dodonew$ Tianya $\rightarrow Dodonew$ $126 \rightarrow Dodonew$	95,457	$126 \rightarrow \text{Taobao}$	79,562	Basic Basic Basic
#14A. 80% Union $\rightarrow 20\%$ Union _B * #14B. 80% Union _{A1} $\rightarrow 20\%$ Union _B #14C. 80% Union _{A2} $\rightarrow 20\%$ Union _B	English	80% of <i>Union</i> dataset 80% of <i>Union</i> _{A1} dataset 80% of <i>Union</i> _{A2} dataset		$\begin{array}{c} 20 \ \% \ Union_B \ \text{dataset} \\ 20 \ \% \ Union_B \ \text{dataset} \\ 20 \ \% \ Union_B \ \text{dataset} \\ \end{array}$	10,785,542	Basic Basic Basic

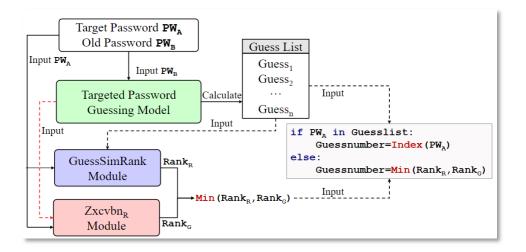
Evaluation



Within 100 guesses, its average success rate in cracking is 17.20% higher than PointerGuess in scenario #13 and 38.78% higher in scenario #14.

Further exploration

Employ POINTERGUESS to evaluate password strength



Apply POINTERGUESS into C3 services

Generate a set of variants based on IloveMacOP

IloveMacOP Iloveyou MacOPIlove IloveMacOP123 MacOP5789 IloveMacOP1 IoveMacOP! Ipassword1! IoveMac123 IloveOP5789

Thank you!

POINTERGUESS: Targeted Password Guessing Model using Pointer Mechanism

on job man

Ding Wang

Nankai University

wangding@nankai.edu.cn

