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Background: Transaction Fees

* We attack Ethereum’s transaction fee mechanism
* Ethereum transactions may execute arbitrary code

* Each unit of computation is measured in gas

e TXs that enter the blockchain pay fees per gas unit consumed
e TXs can revert: roll-back any actions they’ve made

* Even reverted transactions pay fees, to prevent DoS attacks

* Is this enough?
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Insight: Speculative Resource Investment

e Actors speculatively invest computational resources in TXs

* E.g., block builders may execute more TXs than can fit in one block
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Overview

* Goal: lower the revenue of competing blockchain actors
* Method: we present multiple attacks that
* Waste victim resources on invalid TXs that appear valid
* Circumvent defenses that ensure TX validity (hard!)
* Tested on geth, the most popular Ethereum execution client

* Applicable to other cryptocurrencies

» Mitigations necessitate trading off security with user experience

* Blockchain security relies on much more than consensus mechanisms



Our Attacks
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Summary: you're damned if you and damned if you don’t!



Attack 1: ConditionalExhaust

* When creating blocks, actors must execute TXs

* Trick victims to waste time on TXs that cannot be included in blocks
* Create invalid TXs that appear /ucrative
e - attack TXs are processed before other TXs
e = attack TXs cannot be included in blocks

e > victims’ revenue is harmed



]
OFAC Sanctions

e Sanction compliant actors censor non-compliant TXs
* Censorship is “local”: not enforced by consensus

* Compliant actors cannot collect fees from non-compliant TXs

Source: https://home.treasury.qgov/news/press-releases/jy0916 Source: https://censorship.pics/
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ConditionalExhaust: Censorship Variant

* Send attack TXs when proposer is compliant & cannot include them

* We present variants that do not rely on censorship (see paper)
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ConditionalExhaust: Censorship Variant

* If an attack TX is included, it pays for ~1270x less gas than used
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Evaluation

* Flashbot’s min specs: 4 core CPU @ 2.8GHz, 16GB RAM, SSD
* Our testbed’s specs: 64 core CPU @ 2.9GHz, 256GB RAM, NVMe SSDs
* 140 TXs cause testbed to mine empty blocks

* Total cost: at most $770 for TXs to be prioritized over 90% of TXs



Attack 2: MemPurge

* MemPurge tricks victims to store invalid TXs in their memory
 Creates invalid TXs that heuristics find valid (without censorship)
* - other TXs are evicted to make room for attack TXs
* - attack TXs cannot be included in blocks
* - victims’ revenue is harmed

* This is hard! Geth has a thick layer of defenses

* We circumvent them via a multi-phased attack (see paper for details)



Background: Proposer Builder Separation (PBS)
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Attack 3: GhostTX

* DoS risk: creators of invalid blocks/bundles do not pay fees

* Some builders prioritize searchers with good “reputation”
* Meaning, searchers whose TXs tend to enter the chain

* GhostTX tricks searcher victims to include attack TXs in bundles
e - attack TXs are invalidated by the attacker
* = victim reputation is decreased

* First attack on the PBS ecosystem (see paper for details)



Conclusion: Call to Arms

* TX validation: free-for-all, ripe for future work
* Other proposed mechanisms rely on speculation
* Are they vulnerable?

* We present more attack vectors, read our paper!
* E.g.: future proposer duties are known in advance
* Prior work: future proposers can be attacked
* This work: future proposers can attack

* Can these attacks be prevented?



Thank youl!

Code Paper
https://qithub.com/AvivYaish/SpeculativeDoS https://ia.cr/2023/956

Reach out: aviv@avivyaish.com
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