Speculative Denial-of-
Service Attacks in
Fthereum

Aviv Yaish, Kaih

Background: Transaction Fees

* We attack Ethereum’s transaction fee mechanism
* Ethereum transactions may execute arbitrary code

* Each unit of computation is measured in gas

e TXs that enter the blockchain pay fees per gas unit consumed
e TXs can revert: roll-back any actions they’ve made

* Even reverted transactions pay fees, to prevent DoS attacks

* Is this enough?

_YOU/CANT'PAY TRANSACTION FEES

v

FOR TRANSAGTIONS THAT
GANNOT BE INGLUDED IN BLOGKS

Insight: Speculative Resource Investment

e Actors speculatively invest computational resources in TXs

* E.g., block builders may execute more TXs than can fit in one block

Block Builder

Insight: Speculative Resource Investment

e Actors speculatively invest computational resources in TXs

* E.g., block builders may execute more TXs than can fit in one block

TX* pays more than TX'!

Block Builder

TX*

Insight: Speculative Resource Investment

e Actors speculatively invest computational resources in TXs

* E.g., block builders may execute more TXs than can fit in one block

TX* pays more than TX'!

Overview

* Goal: lower the revenue of competing blockchain actors
* Method: we present multiple attacks that
* Waste victim resources on invalid TXs that appear valid
* Circumvent defenses that ensure TX validity (hard!)
* Tested on geth, the most popular Ethereum execution client

* Applicable to other cryptocurrencies

» Mitigations necessitate trading off security with user experience

* Blockchain security relies on much more than consensus mechanisms

Our Attacks

Execution

-
ConditionalExhaust:

waste computation

_

~

-

J

How do you
validate TXs?
_ J

\

v

Heuristics

f

_

MemPurge: discard
TXs from memory

~

J

Reputation
4)
GhostTX: harm
reputation
- Y,

Summary: you're damned if you and damned if you don’t!

Attack 1: ConditionalExhaust

* When creating blocks, actors must execute TXs

* Trick victims to waste time on TXs that cannot be included in blocks
* Create invalid TXs that appear /ucrative
e - attack TXs are processed before other TXs
e = attack TXs cannot be included in blocks

e > victims’ revenue is harmed

]
OFAC Sanctions

e Sanction compliant actors censor non-compliant TXs
* Censorship is “local”: not enforced by consensus

* Compliant actors cannot collect fees from non-compliant TXs

Source: https://home.treasury.qgov/news/press-releases/jy0916 Source: https://censorship.pics/

S. DEPARTMENT OF THE TREASURY L@ Nov 15, 2023

== non-censoring: 24.8%

Currency Mixer Tornado Cash

2 |

+ :

3 80 W censoring: 75.2% L

n h

NN

—~ 60 i \.

v \\\ NN

NEWS PRESS RELEASES § 40 \\\ S
res Releases U.S. Treasury Sanctions Notorious Virtual . \\ N
\u

o \:

oV '

\

zig\ﬁ\\\\\ww\\\\\\\

U
R %*.9 s Je ©o
O2; 025 “O2 093 023

https://home.treasury.gov/news/press-releases/jy0916
https://censorship.pics/

ConditionalExhaust: Censorship Variant

* Send attack TXs when proposer is compliant & cannot include them

* We present variants that do not rely on censorship (see paper)
(1) Send TX

VY

Attacker

TX

Is the proposer executing
this TX compliant?

Yes Vi

Vv No

Execute

complex code

Execute
simple code

v

Transfer 1 wei to
sanctioned address

Proposer

(2) Verity TX 18
compliant

<«
(3) TX should be

censored & dropped

ConditionalExhaust: Censorship Variant

* If an attack TX is included, it pays for ~1270x less gas than used

VY

Attacker

30 million gas e complex code

(1) Send TX
> (2) Verify TX 1s
TX compliant
Is the proposer executing
. . ——
this TX compliant? (3) TX should be
Yes 5 y No censored & dropped

Execute

Execute
simple code

Proposer
P 23628 gas
(only 10% more than the

V

Transfer 1 wei to
sanctioned address

simplest TX possible)

Evaluation

* Flashbot’s min specs: 4 core CPU @ 2.8GHz, 16GB RAM, SSD
* Our testbed’s specs: 64 core CPU @ 2.9GHz, 256GB RAM, NVMe SSDs
* 140 TXs cause testbed to mine empty blocks

* Total cost: at most $770 for TXs to be prioritized over 90% of TXs

Attack 2: MemPurge

* MemPurge tricks victims to store invalid TXs in their memory
 Creates invalid TXs that heuristics find valid (without censorship)
* - other TXs are evicted to make room for attack TXs
* - attack TXs cannot be included in blocks
* - victims’ revenue is harmed

* This is hard! Geth has a thick layer of defenses

* We circumvent them via a multi-phased attack (see paper for details)

Background: Proposer Builder Separation (PBS)

N —

q q
Searchers Builders Relays Proposers
Collect TXs in Pack TXs & Verify block Propose blocks
bundles & extract bundles in blocks contents

value from them

Attack 3: GhostTX

* DoS risk: creators of invalid blocks/bundles do not pay fees

* Some builders prioritize searchers with good “reputation”
* Meaning, searchers whose TXs tend to enter the chain

* GhostTX tricks searcher victims to include attack TXs in bundles
e - attack TXs are invalidated by the attacker
* = victim reputation is decreased

* First attack on the PBS ecosystem (see paper for details)

Conclusion: Call to Arms

* TX validation: free-for-all, ripe for future work
* Other proposed mechanisms rely on speculation
* Are they vulnerable?

* We present more attack vectors, read our paper!
* E.g.: future proposer duties are known in advance
* Prior work: future proposers can be attacked
* This work: future proposers can attack

* Can these attacks be prevented?

Thank youl!

Code Paper
https://qithub.com/AvivYaish/SpeculativeDoS https://ia.cr/2023/956

Reach out: aviv@avivyaish.com

https://ia.cr/2023/956
https://github.com/AvivYaish/SpeculativeDoS
mailto:aviv@avivyaish.com

	Slide 1: Speculative Denial-of-Service Attacks in Ethereum
	Slide 2: Background: Transaction Fees
	Slide 3
	Slide 4: Insight: Speculative Resource Investment
	Slide 5: Insight: Speculative Resource Investment
	Slide 6: Insight: Speculative Resource Investment
	Slide 7: Overview
	Slide 8: Our Attacks
	Slide 9: Attack 1: ConditionalExhaust
	Slide 10: OFAC Sanctions
	Slide 11: ConditionalExhaust: Censorship Variant
	Slide 12: ConditionalExhaust: Censorship Variant
	Slide 13: Evaluation
	Slide 14: Attack 2: MemPurge
	Slide 15: Background: Proposer Builder Separation (PBS)
	Slide 16: Attack 3: GhostTX
	Slide 17: Conclusion: Call to Arms
	Slide 18: Thank you!

