ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

rusenix
(' ASSOCIATION

AVAILABLE FUNCTIONAL REPRODUCED

Endokernel: A Thread Safe Monitor
for Lightwelight Subprocess Isolation

Fangfel Yang, Bumjin Im, Weijie Huang, Kelly Kaoudis,
Anjo Vahldiek-Oberwagner, Chia-Che Tsal, Nathan
Dautenhahn

Process provide isolation but when exploited enable
access to the entire runtime

e Compartmentalize the application to improve security
e [ast, fine-grained and high-performance isolation with hardware assistance
e Monitors are used to manage the user space isolation by previous work

Network

NGINX

Process provide isolation but when exploited enable
access to the entire runtime

e Compartmentalize the application to improve security
e [ast, fine-grained and high-performance isolation with hardware assistance
e Monitors are used to manage the user space isolation by previous work

Process provide isolation but when exploited enable
access to the entire runtime

e Compartmentalize the application to improve security
e [ast, fine-grained and high-performance isolation with hardware assistance
e Monitors are used to manage the user space isolation by previous work

Privilege Separation with In-process Secure Monitor

e Kernel unaware of isolation policy and violate the policy |tk———

o Filtering syscalls to ensure the kernel doesn’t break the isolation
L Parser TLS
policy in user space

e Monitor determines whether the system call is legitimate
e BUT, making the right policy decisions in
multithreading is harder than you think

e => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Privilege Separation with In-process Secure Monitor

User Application

e Kernel unaware of isolation policy and violate the policy
o Filtering syscalls to ensure the kernel doesn’t break the isolation
policy in user space

e Monitor determines whether the system call is legitimate

e BUT, making the right policy decisions in
multithreading is harder than you think

e => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Privilege Separation with In-process Secure Monitor

e Kernel unaware of isolation policy and violate the policy |tk———

o Filtering syscalls to ensure the kernel doesn’t break the isolation
L Parser TLS
policy in user space o

e Monitor determines whether the system call is legitimate ..
e BUT, making the right policy decisions in ”

multithreading is harder than you think
e => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Privilege Separation with In-process Secure Monitor

e Kernel unaware of isolation policy and violate the policy |,

L :
File System Signals App Context

Memory Maps Isolated Module

Secure Monitor itself becomes the problem!

Privilege Separation with In-process Secure Monitor

e Kernel unaware of isolation policy and violate the policy | imik——

o Filtering syscalls to ensure the kernel doesn’t break the isolation El
. Parser TLS
policy in user space
e Monitor determines whether the system call is legitimate
e BUT, making the right policy decisions in
multithreading is harder than you think

e => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Existing Works Fails to Secure Multi-threaded Monitor

e Monitor needs truth about the system to make right decision
o Which memory address belongs to whom? Is this file descriptor valid? ...

e System states changed via syscalls and signals: easy if only one thread

e Gap: changes in state and updates in the monitor are never synchronized

o The kernel maintains its internal consistency but not for the in-process monitor
o Outdated or incorrect state will be used

Monitor Check Mmap Update
mmap syscall

Monitor makes decisions based on incorrect information!

Existing Works Fails to Secure Multi-threaded Monitor

e Monitor needs truth about the system to make right decision
o Which memory address belongs to whom? Is this file descriptor valid? ...

e System states changed via syscalls and signals: easy if only one thread

e Gap: changes in state and updates in the monitor are never synchronized

o The kernel maintains its internal consistency but not for the in-process monitor
o Outdated or incorrect state will be-used

Monitor Check \ Mmap Update
mmap syscall

Monitor makes decisions based on incorrect information!

Existing Works Fails to Secure Multi-threaded Monitor

e Monitor needs truth about the system to make right decision
o Which memory address belongs to whom? [s this file descriptor valid? ...

e System states changed via syscalls and signals: easy if only one thread

e Gap: changes in state and updates in the monitor are never synchronized

o The kernel maintains its internal consistency but not for the in-process monitor
o Outdated or incorrect state will be-used

Monitor Check \ Mmap Update
mmap syscall

Monitor makes decisions based on incorrect information!

Endokernel Design

Challenge: The kernel does not cooperate with the monitor

e General Syscalls: memory metadata, file descriptors L Applesian

o open/read/write/mmap/mprotect/... Parser TLS
o States change before/after syscalls
e Signals: Kernel-involved context switches
o Signal delivery and sigreturn can alter control flow and privilege
e Highmem: access physical memory and bypass checks
Signal Syscall

o Hidden, complex, delayed and overlooked
o Requires case-by-case analysis and solutions -
9 y y Kernel

Endokernel — Build a thread-safe monitor!

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

Domain 1

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory) steal it

Allow unmap for D1
Remove address from D1

Domains: D2 D2 _
unmap

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

- No map found
Add address to D2 Memory
mmap

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

unmap
mmap
) Allow write for D2
write(...)

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

unmap
mmap
Domain 2
write(...)
write(...)

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1
unmap
mmap
Domain 2
write(...)
D1’s data written to file
write(...)
<

B

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

unmap
mmap
Domain 2
write(...)
write(...)

D2 steals the data |
ite(...)
I<

Thread 3 Thread 2 Thread 1 Monitor Kernel 8

Solution: Weak Metadata Synchronization

e Tolerate inconsistencies before and after system calls; ensure they only
lead to inspection failures

e Mark pages involved in system calls; block other calls that would change
their properties while the memory is in use

e Allow concurrent invocation of system calls if they don't alter page
properties

e Ensure correct decisions are made, even with Kernel-Endokernel
Inconsistencies, without violating policy.

Desynchronization never violates security policies

Signal: Intermediate States Exposed by Sigreturn
e Signal delivery and return are meant to switch contexts
e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

mm
mm

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

m m

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

m m

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

m m

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

m m

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

ETm) o 2

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

AT
BN =) B ey B

10

Signal: Intermediate States Exposed by Sigreturn

e Signal delivery and return are meant to switch contexts

e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches

ETm) bl

10

Solution: Fully Virtualized Signal

User
e Endokernel acts as a middleware Module 1

e Endokernel receives signals from the kernel

o Stores signals in a pending queue
: : Signal Virt
o Returns control to the kernel with sigreturn
e Endokernel delivers signals to the user Endokema\@/

o Creates a new sigcontext and sigframe.
o Simulates the user's sigreturn syscall

Kernel

Virtualized secure and compatible signals

Solution: Fully Virtualized Signal

User
e Endokernel acts as a middleware Module 1

e Endokernel receives signals from the kernel

o Stores signals in a pending queue
: : Signal Virt
o Returns control to the kernel with sigreturn
e Endokernel delivers signals to the user Endokema\@/

¢ C.reates a new S|gcont.ext and sigframe. Signal Delivery .
o Simulates the user's sigreturn syscall

Virtualized secure and compatible signals

Solution: Fully Virtualized Signal

User
e Endokernel acts as a middleware Module 1

e Endokernel receives signals from the kernel

o Stores signals in a pending queue
: : Signal Virt
o Returns control to the kernel with sigreturn
e Endokernel delivers signals to the user Endokema\@/

o C.reates a new S|gcont.ext and sigframe. Signal Delivery S Signal Return
o Simulates the user's sigreturn syscall

Virtualized secure and compatible signals

Solution: Fully Virtualized Signal

e Endokernel acts as a middleware

e Endokernel receives signals from the kernel
o Stores signals in a pending queue
o Returns control to the kernel with sigreturn

e Endokernel delivers signals to the user

o Creates a new sigcontext and sigframe.
o Simulates the user's sigreturn syscall

Virtualized secure and compatible signals

Solution: Fully Virtualized Signal

e Endokernel acts as a middleware

e Endokernel receives signals from the kernel
o Stores signals in a pending queue
o Returns control to the kernel with sigreturn

e Endokernel delivers signals to the user

o Creates a new sigcontext and sigframe.
o Simulates the user's sigreturn syscall

Virtualized secure and compatible signals

Highmem: Bypass Pattern and Delayed Memory Access

e Various triggering mechanisms
o [sys/kernel/tracing/user_events_data
o Process _vm_readv, Sendmsg with MSG_ZEROCOPY
e Access physical pages with high memory and bypass permission check
o Some code paths checked
m _ get user pages -> check vma flags -> arch_vma_access_permitted
o Nonetheless, sendmsg delayed the memory access
o The MMU may change after the check

el M cad S vvu [l rcad Jl Physica
Memory Memory

Highmem: Bypass Pattern and Delayed Memory Access

e Various triggering mechanisms
o [sys/kernel/tracing/user ey s
o Process _vm_readyg@®Pndmsg with MSG_ZEROCOPY

Bypassed

Highmem: Bypass Pattern and Delayed Memory Access

e Various triggering mechanisms
o [sys/kernel/tracing/user_events_data
o Process _vm_readv, Sendmsg with MSG_ZEROCOPY
e Access physical pages with high memory and bypass permission check
o Some code paths checked
m _ get user pages -> check vma flags -> arch_vma_access_permitted
o Nonetheless, sendmsg delayed the memory access
o The MMU may change after the check

el M cad S vvu [l rcad Jl Physica
Memory Memory

Solution: Extra Policy with Syscalls Analysis

e Traced the syscalls in the kernel that use certain APIs most of which
are related to driver and ioctl

e Restrictions need to be applied based on specific use cases

o For example, adding extra policies to prohibit the use of zero copy or prevent the
memory from being unmapped

e Kernel features that improve efficiency can make in-process
monitoring more challenging

|dentified patterns, allowing for case-by-case analysis

Evaluation

14

Virtualization Cost with Different Callgate Mechanism

S
=

40

k2
=

=
-
=
O
=
=
O
=
o

AW

M=l :
curl lighttpd nginx sqlite3

B B nex-sec B B nex-sud B B cet-sec [O cet-sud U @ strace

Virtualization Cost with Different Callgate Mechanism

k=
-
=
O
=
=
O
=
o

AW

M=l :
curl lighttpd nginx sqlite3

0 B nex-sec B B nex-sud ¥ B cet-sec 0 O cet-sud B B strace

Virtualization Cost with Different Callgate Mechanism

k=
-
=
O
=
=
O
=
o

AW

M=l :
curl lighttpd nginx sqlite3

B B nex-sec B B nex-sud B B cet-sec [1 0 cet-sud B @ strace

Virtualization Cost with Different Callgate Mechanism

=
-
=
O
=
=
O
=
o

AW

M=l :
curl lighttpd nginx sqlite3

B @ nex-sec B B nex-sud B B cet-sec [0 cet-sud 0 @ strace

Virtualization Cost with Different Callgate Mechanism

S
=

40

k2
=

e
=
-
o
L
—
=
¥
=
o

. Ji e ._gr” Il] L

curl lighttpd nginx sqlite3 Zip

B B nex-sec B B nex-sud B B cet-sec [O cet-sud U @ strace

Virtualization Cost with Different Callgate Mechanism

S
=

40

k2
=

e
=
-
o
L
—
=
¥
=
o

0 |—H_‘ . = m=.l|—| HI Hmlﬂ

curl lighttpd nginx sglite3 Z1p

B B nex-sec B B nex-sud B B cet-sec [O cet-sud U @ strace

Virtualization Cost with Different Callgate Mechanism

S
=

40

k2
=

e
=
-
o
L
—
=
¥
=
o

i ||

curl lighttpd nginx sglite3 Z1p

B B nex-sec B B nex-sud B B cet-sec [O cet-sud U @ strace

Virtualization Cost with Different Callgate Mechanism

=
-
=
O
=
=
O
=
o

curl l1ighttpd nginx sqlite3

B B nex-sec B B nex-sud B B cet-sec [O cet-sud U @ strace

Thread Scalability: Near Consistent Overhead with More Thread

—— native
—— nex-sec 16
—— nex-sud
— A cet-sec

cet-sud
strace

. 16 32
Number of threads

Figure 6: Random read bandwidth for diff. numbers of
threads measured with sysbench. Std. dev. below 0.7%.

Thread Scalability: Near Consistent Overhead with More Thread

—%— native
—=— nex-sec 16
—=k— nex-sud

—a— CCt-5¢C

cet-sud
strace

. 16 32
Number of threads

Figure 6: Random read bandwidth for diff. numbers of
threads measured with sysbench. Std. dev. below 0.7%.

Thread Scalability: Near Consistent Overhead with More Thread

—%— native
—=— nex-sec 16
—=k— nex-sud

—a— CCt-5¢C

cet-sud
strace

. 16 32
Number of threads

Figure 6: Random read bandwidth for diff. numbers of
threads measured with sysbench. Std. dev. below 0.7%.

Thread Scalability: Near Consistent Overhead with More Thread

native
——— nex-sec 16
—=k— nex-sud

—a— CCt-5¢C

cet-sud
strace

| 6
Number of threads]

Figure 6: Random read bandwidth for diff. numbers of
threads measured with sysbench. Std. dev. below 0.7%.

Compatibility Test for the Signal and Multithreading

e Linux Test Project (LTP) provides regression and conformance to
the kernel

e The Endokernel passed 95.95% of the LTP test cases

e The failed cases are not related to thread or signal compatibility

©)

O
©)
©)

Security-related

Kernel Side-Effect

Endokernel as a secondary loading
Memory Layout

RS

Takeaways

For an in-process monitor, thread safety is not as simple as just adding locks

Weak Metadata Synchronization
o Conservative monitor state updates to achieve safe results even in cases of unsynchronized
operations

Signals Virtualization
o Complete virtualization of signal behavior within the monitor to avoid synchronization with the kernel

High Memory Access Bypass

o Locating these patterns through source code analysis, enabling for case-by-case examination
<5.5% overhead on nginx and lighttpd; ~30% overhead on curl with nex-sud
~23% overhead with increasing thread count o) @)
Passes 95% of LTP tests with insignificant failed cases ¥t

Source code: https://github.com/endokernel/test/ it
Q&A o)

	Slide 1: Endokernel: A Thread Safe Monitor for Lightweight Subprocess Isolation
	Slide 2: Process provide isolation but when exploited enable access to the entire runtime
	Slide 3: Process provide isolation but when exploited enable access to the entire runtime
	Slide 4: Process provide isolation but when exploited enable access to the entire runtime
	Slide 5: Privilege Separation with In-process Secure Monitor
	Slide 6: Privilege Separation with In-process Secure Monitor
	Slide 7: Privilege Separation with In-process Secure Monitor
	Slide 8: Privilege Separation with In-process Secure Monitor
	Slide 9: Privilege Separation with In-process Secure Monitor
	Slide 10: Existing Works Fails to Secure Multi-threaded Monitor
	Slide 11: Existing Works Fails to Secure Multi-threaded Monitor
	Slide 12: Existing Works Fails to Secure Multi-threaded Monitor
	Slide 13: Endokernel Design
	Slide 14: Challenge: The kernel does not cooperate with the monitor
	Slide 15: General Syscalls: Monitor/Kernel Synchronization
	Slide 16: General Syscalls: Monitor/Kernel Synchronization
	Slide 17: General Syscalls: Monitor/Kernel Synchronization
	Slide 18: General Syscalls: Monitor/Kernel Synchronization
	Slide 19: General Syscalls: Monitor/Kernel Synchronization
	Slide 20: General Syscalls: Monitor/Kernel Synchronization
	Slide 21: General Syscalls: Monitor/Kernel Synchronization
	Slide 22: Solution: Weak Metadata Synchronization
	Slide 23: Signal: Intermediate States Exposed by Sigreturn
	Slide 24: Signal: Intermediate States Exposed by Sigreturn
	Slide 25: Signal: Intermediate States Exposed by Sigreturn
	Slide 26: Signal: Intermediate States Exposed by Sigreturn
	Slide 27: Signal: Intermediate States Exposed by Sigreturn
	Slide 28: Signal: Intermediate States Exposed by Sigreturn
	Slide 29: Signal: Intermediate States Exposed by Sigreturn
	Slide 30: Signal: Intermediate States Exposed by Sigreturn
	Slide 31: Solution: Fully Virtualized Signal
	Slide 32: Solution: Fully Virtualized Signal
	Slide 33: Solution: Fully Virtualized Signal
	Slide 34: Solution: Fully Virtualized Signal
	Slide 35: Solution: Fully Virtualized Signal
	Slide 36: Highmem: Bypass Pattern and Delayed Memory Access
	Slide 37: Highmem: Bypass Pattern and Delayed Memory Access
	Slide 38: Highmem: Bypass Pattern and Delayed Memory Access
	Slide 39: Solution: Extra Policy with Syscalls Analysis
	Slide 40: Evaluation
	Slide 41: Virtualization Cost with Different Callgate Mechanism
	Slide 42: Virtualization Cost with Different Callgate Mechanism
	Slide 43: Virtualization Cost with Different Callgate Mechanism
	Slide 44: Virtualization Cost with Different Callgate Mechanism
	Slide 45: Virtualization Cost with Different Callgate Mechanism
	Slide 46: Virtualization Cost with Different Callgate Mechanism
	Slide 47: Virtualization Cost with Different Callgate Mechanism
	Slide 48: Virtualization Cost with Different Callgate Mechanism
	Slide 49: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 50: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 51: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 52: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 53: Compatibility Test for the Signal and Multithreading
	Slide 54: Takeaways

