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Process provide isolation but when exploited enable
access to the entire runtime

e Compartmentalize the application to improve security
e [ast, fine-grained and high-performance isolation with hardware assistance
e Monitors are used to manage the user space isolation by previous work
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Privilege Separation with In-process Secure Monitor

e Kernel unaware of isolation policy and violate the policy |tk———

o Filtering syscalls to ensure the kernel doesn’t break the isolation
L Parser TLS
policy in user space

e Monitor determines whether the system call is legitimate
e BUT, making the right policy decisions in
multithreading is harder than you think

e => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!
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Existing Works Fails to Secure Multi-threaded Monitor

e Monitor needs truth about the system to make right decision
o  Which memory address belongs to whom? Is this file descriptor valid? ...

e System states changed via syscalls and signals: easy if only one thread

e Gap: changes in state and updates in the monitor are never synchronized

o The kernel maintains its internal consistency but not for the in-process monitor
o Outdated or incorrect state will be used

Monitor Check Mmap Update
mmap syscall

Monitor makes decisions based on incorrect information!
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Challenge: The kernel does not cooperate with the monitor

e General Syscalls: memory metadata, file descriptors L Applesian

o open/read/write/mmap/mprotect/... Parser TLS
o States change before/after syscalls
e Signals: Kernel-involved context switches
o Signal delivery and sigreturn can alter control flow and privilege
e Highmem: access physical memory and bypass checks
Signal Syscall

o Hidden, complex, delayed and overlooked
o Requires case-by-case analysis and solutions -
9 y y Kernel

Endokernel — Build a thread-safe monitor!




General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

Domain 1

Thread 3 Thread 2 Thread 1 Monitor Kernel 8
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General Syscalls: Monitor/Kernel Synchronization

e Assume D1 owns a secret memory region, and D2 wants to steal it

Domains: D2 D2 D1

unmap
mmap
Domain 2
write(...)
write(...)

D2 steals the data |
ite(...)
I<
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Solution: Weak Metadata Synchronization

e Tolerate inconsistencies before and after system calls; ensure they only
lead to inspection failures

e Mark pages involved in system calls; block other calls that would change
their properties while the memory is in use

e Allow concurrent invocation of system calls if they don't alter page
properties

e Ensure correct decisions are made, even with Kernel-Endokernel
Inconsistencies, without violating policy.

Desynchronization never violates security policies




Signal: Intermediate States Exposed by Sigreturn
e Signal delivery and return are meant to switch contexts
e Different contexts have different permissions defined by the policy

e Unfortunately, the kernel cannot correctly handle these permissions, and
can break the policy during context switches
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Solution: Fully Virtualized Signal

User
e Endokernel acts as a middleware Module 1

e Endokernel receives signals from the kernel

o Stores signals in a pending queue
: : Signal Virt
o Returns control to the kernel with sigreturn
e Endokernel delivers signals to the user Endokema\@/

o Creates a new sigcontext and sigframe.
o Simulates the user's sigreturn syscall

Kernel

Virtualized secure and compatible signals
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Highmem: Bypass Pattern and Delayed Memory Access

e Various triggering mechanisms
o [sys/kernel/tracing/user_events_data
o Process _vm_readv, Sendmsg with MSG_ZEROCOPY
e Access physical pages with high memory and bypass permission check
o Some code paths checked
m _ get user pages -> check vma flags -> arch_vma_access_permitted
o Nonetheless, sendmsg delayed the memory access
o The MMU may change after the check

el M cad S vvu [l rcad Jl Physica
Memory Memory
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Solution: Extra Policy with Syscalls Analysis

e Traced the syscalls in the kernel that use certain APIs most of which
are related to driver and ioctl

e Restrictions need to be applied based on specific use cases

o For example, adding extra policies to prohibit the use of zero copy or prevent the
memory from being unmapped

e Kernel features that improve efficiency can make in-process
monitoring more challenging

|dentified patterns, allowing for case-by-case analysis




Evaluation

14
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Thread Scalability: Near Consistent Overhead with More Thread
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Figure 6: Random read bandwidth for diff. numbers of
threads measured with sysbench. Std. dev. below 0.7%.
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Compatibility Test for the Signal and Multithreading

e Linux Test Project (LTP) provides regression and conformance to
the kernel

e The Endokernel passed 95.95% of the LTP test cases

e The failed cases are not related to thread or signal compatibility

©)

O
©)
©)

Security-related

Kernel Side-Effect

Endokernel as a secondary loading
Memory Layout

RS



Takeaways

For an in-process monitor, thread safety is not as simple as just adding locks

Weak Metadata Synchronization
o Conservative monitor state updates to achieve safe results even in cases of unsynchronized
operations

Signals Virtualization
o Complete virtualization of signal behavior within the monitor to avoid synchronization with the kernel

High Memory Access Bypass

o Locating these patterns through source code analysis, enabling for case-by-case examination
<5.5% overhead on nginx and lighttpd; ~30% overhead on curl with nex-sud
~23% overhead with increasing thread count o) @)
Passes 95% of LTP tests with insignificant failed cases ¥t

Source code: https://github.com/endokernel/test/ it
Q&A o)
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