
Endokernel: A Thread Safe Monitor

for Lightweight Subprocess Isolation

Fangfei Yang, Bumjin Im, Weijie Huang, Kelly Kaoudis,
Anjo Vahldiek-Oberwagner, Chia-Che Tsai, Nathan

Dautenhahn

Process provide isolation but when exploited enable

access to the entire runtime

● Compartmentalize the application to improve security

● Fast, fine-grained and high-performance isolation with hardware assistance

● Monitors are used to manage the user space isolation by previous work

Crypto

Parser

Protocol

Network

Cache

…

NGINX 2

Process provide isolation but when exploited enable

access to the entire runtime

● Compartmentalize the application to improve security

● Fast, fine-grained and high-performance isolation with hardware assistance

● Monitors are used to manage the user space isolation by previous work

Crypto

Parser

Protocol

Network

Cache

…

NGINX 2

Process provide isolation but when exploited enable

access to the entire runtime

● Compartmentalize the application to improve security

● Fast, fine-grained and high-performance isolation with hardware assistance

● Monitors are used to manage the user space isolation by previous work

Crypto

Parser

Protocol

Network

Cache

…

NGINX 2

Privilege Separation with In-process Secure Monitor

User Application● Kernel unaware of isolation policy and violate the policy
○ Filtering syscalls to ensure the kernel doesn’t break the isolation

policy in user space

● Monitor determines whether the system call is legitimate

● BUT, making the right policy decisions in

multithreading is harder than you think

● => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Parser … TLS

Kernel

3

Privilege Separation with In-process Secure Monitor

User Application● Kernel unaware of isolation policy and violate the policy
○ Filtering syscalls to ensure the kernel doesn’t break the isolation

policy in user space

● Monitor determines whether the system call is legitimate

● BUT, making the right policy decisions in

multithreading is harder than you think

● => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Parser … TLS

Kernel

mprotect

TLS

3

Privilege Separation with In-process Secure Monitor

User Application● Kernel unaware of isolation policy and violate the policy
○ Filtering syscalls to ensure the kernel doesn’t break the isolation

policy in user space

● Monitor determines whether the system call is legitimate

● BUT, making the right policy decisions in

multithreading is harder than you think

● => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Parser … TLS

In-process monitor

Kernel

3

Privilege Separation with In-process Secure Monitor

User Application● Kernel unaware of isolation policy and violate the policy
○ Filtering syscalls to ensure the kernel doesn’t break the isolation

policy in user space

● Monitor determines whether the system call is legitimate

● BUT, making the right policy decisions in

multithreading is harder than you think

● => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Parser … TLS

In-process monitor

Kernel

File System

Memory Maps

Signals

Isolated Module

App Context

…

4

Privilege Separation with In-process Secure Monitor

User Application● Kernel unaware of isolation policy and violate the policy
○ Filtering syscalls to ensure the kernel doesn’t break the isolation

policy in user space

● Monitor determines whether the system call is legitimate

● BUT, making the right policy decisions in

multithreading is harder than you think

● => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Parser … TLS

In-process monitor

Kernel

In-process monitor

4

Existing Works Fails to Secure Multi-threaded Monitor

● Monitor needs truth about the system to make right decision
○ Which memory address belongs to whom? Is this file descriptor valid? …

● System states changed via syscalls and signals: easy if only one thread

● Gap: changes in state and updates in the monitor are never synchronized
○ The kernel maintains its internal consistency but not for the in-process monitor

○ Outdated or incorrect state will be used

Monitor makes decisions based on incorrect information!

Monitor

mmap
Check gap Mmap

syscall
Updategap

5

Existing Works Fails to Secure Multi-threaded Monitor

● Monitor needs truth about the system to make right decision
○ Which memory address belongs to whom? Is this file descriptor valid? …

● System states changed via syscalls and signals: easy if only one thread

● Gap: changes in state and updates in the monitor are never synchronized
○ The kernel maintains its internal consistency but not for the in-process monitor

○ Outdated or incorrect state will be used

Monitor makes decisions based on incorrect information!

Monitor

mmap
Check gap Mmap

syscall
Updategap

5

Existing Works Fails to Secure Multi-threaded Monitor

● Monitor needs truth about the system to make right decision
○ Which memory address belongs to whom? Is this file descriptor valid? …

● System states changed via syscalls and signals: easy if only one thread

● Gap: changes in state and updates in the monitor are never synchronized
○ The kernel maintains its internal consistency but not for the in-process monitor

○ Outdated or incorrect state will be used

Monitor makes decisions based on incorrect information!

Monitor

mmap
Check gap Mmap

syscall
Check Updategap

5

Endokernel Design

6

Challenge: The kernel does not cooperate with the monitor

● General Syscalls: memory metadata, file descriptors
○ open/read/write/mmap/mprotect/…

○ States change before/after syscalls

● Signals: Kernel-involved context switches
○ Signal delivery and sigreturn can alter control flow and privilege

● Highmem: access physical memory and bypass checks
○ Hidden, complex, delayed and overlooked

○ Requires case-by-case analysis and solutions

Endokernel – Build a thread-safe monitor!

User Application

Parser … TLS

Kernel

In-process monitor

Highmem

SyscallSignal

7

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

D1D2D2Domains:

Memory

Domain 1

8

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

Allow unmap for D1

Remove address from D1
D1D2D2Domains:

Memory

Domain 1Unmap

8

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

No map found

Add address to D2

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)
Allow write for D2

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)

write(...)

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)

write(...)
D1’s data written to file

write(...)

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8

General Syscalls: Monitor/Kernel Synchronization

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)

write(...)
write(...)

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

D2 steals the data

8

Solution: Weak Metadata Synchronization

● Tolerate inconsistencies before and after system calls; ensure they only

lead to inspection failures

● Mark pages involved in system calls; block other calls that would change

their properties while the memory is in use

● Allow concurrent invocation of system calls if they don't alter page

properties

● Ensure correct decisions are made, even with Kernel-Endokernel

inconsistencies, without violating policy.

Desynchronization never violates security policies

9

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal Monitor Signal App

App Sigreturn Monitor Sigreturn Kernel

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

App Sigreturn Monitor Sigreturn Kernel

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

Update

App Sigreturn Monitor Sigreturn Kernel

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

Update

App Sigreturn Monitor Sigreturn Kernel

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

Update

App Sigreturn Monitor Sigreturn Kernel

Update

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

Update

App Sigreturn Monitor Sigreturn Kernel

Update Update

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

Update

App Sigreturn Monitor Sigreturn Kernel

Update Update

10

Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and

can break the policy during context switches

Kernel Signal

Update

Monitor Signal App

Update

App Sigreturn Monitor Sigreturn Kernel

Update Update

???

10

Solution: Fully Virtualized Signal

● Endokernel acts as a middleware

● Endokernel receives signals from the kernel
○ Stores signals in a pending queue

○ Returns control to the kernel with sigreturn

● Endokernel delivers signals to the user
○ Creates a new sigcontext and sigframe.

○ Simulates the user's sigreturn syscall

Kernel

User

Endokernel

Module 1

Signal Virt

Virtualized secure and compatible signals

11

Solution: Fully Virtualized Signal

● Endokernel acts as a middleware

● Endokernel receives signals from the kernel
○ Stores signals in a pending queue

○ Returns control to the kernel with sigreturn

● Endokernel delivers signals to the user
○ Creates a new sigcontext and sigframe.

○ Simulates the user's sigreturn syscall

Kernel

User

Endokernel

Module 1

Signal Delivery

Signal Virt

Virtualized secure and compatible signals

11

Solution: Fully Virtualized Signal

● Endokernel acts as a middleware

● Endokernel receives signals from the kernel
○ Stores signals in a pending queue

○ Returns control to the kernel with sigreturn

● Endokernel delivers signals to the user
○ Creates a new sigcontext and sigframe.

○ Simulates the user's sigreturn syscall

Kernel

User

Endokernel

Module 1

Signal Delivery Signal Return

Signal Virt

Virtualized secure and compatible signals

11

Solution: Fully Virtualized Signal

● Endokernel acts as a middleware

● Endokernel receives signals from the kernel
○ Stores signals in a pending queue

○ Returns control to the kernel with sigreturn

● Endokernel delivers signals to the user
○ Creates a new sigcontext and sigframe.

○ Simulates the user's sigreturn syscall

Kernel

User

Endokernel

Module 1

Signal Delivery Signal Return

Signal Virt

Virtualized secure and compatible signals

Signal Delivery

11

Solution: Fully Virtualized Signal

● Endokernel acts as a middleware

● Endokernel receives signals from the kernel
○ Stores signals in a pending queue

○ Returns control to the kernel with sigreturn

● Endokernel delivers signals to the user
○ Creates a new sigcontext and sigframe.

○ Simulates the user's sigreturn syscall

Kernel

User

Endokernel

Module 1

Signal Delivery Signal Return

Signal Virt

Virtualized secure and compatible signals

Signal Delivery Signal Return

11

Highmem: Bypass Pattern and Delayed Memory Access

● Various triggering mechanisms
○ /sys/kernel/tracing/user_events_data

○ Process_vm_readv, Sendmsg with MSG_ZEROCOPY

● Access physical pages with high memory and bypass permission check

○ Some code paths checked

■ __get_user_pages -> check_vma_flags -> arch_vma_access_permitted

○ Nonetheless, sendmsg delayed the memory access

○ The MMU may change after the check

Kernel read
Virtual

Memory
read MMU read Physical

Memory

12

Highmem: Bypass Pattern and Delayed Memory Access

● Various triggering mechanisms
○ /sys/kernel/tracing/user_events_data

○ Process_vm_readv, Sendmsg with MSG_ZEROCOPY

● Access physical pages with high memory and bypass permission check

○ Some code paths checked

■ __get_user_pages -> check_vma_flags -> arch_vma_access_permitted

○ Nonetheless, sendmsg delayed the memory access

○ The MMU may change after the check

Kernel read
Virtual

Memory
read MMU read Physical

MemoryBypassed
12

Highmem: Bypass Pattern and Delayed Memory Access

● Various triggering mechanisms
○ /sys/kernel/tracing/user_events_data

○ Process_vm_readv, Sendmsg with MSG_ZEROCOPY

● Access physical pages with high memory and bypass permission check

○ Some code paths checked

■ __get_user_pages -> check_vma_flags -> arch_vma_access_permitted

○ Nonetheless, sendmsg delayed the memory access

○ The MMU may change after the check

Kernel read
Virtual

Memory
read MMU read Physical

Memory

12

Solution: Extra Policy with Syscalls Analysis

● Traced the syscalls in the kernel that use certain APIs most of which

are related to driver and ioctl

● Restrictions need to be applied based on specific use cases
○ For example, adding extra policies to prohibit the use of zero copy or prevent the

memory from being unmapped

● Kernel features that improve efficiency can make in-process

monitoring more challenging

Identified patterns, allowing for case-by-case analysis

13

Evaluation

14

Virtualization Cost with Different Callgate Mechanism

15

Virtualization Cost with Different Callgate Mechanism

15

Virtualization Cost with Different Callgate Mechanism

15

Virtualization Cost with Different Callgate Mechanism

15

Virtualization Cost with Different Callgate Mechanism

15

Virtualization Cost with Different Callgate Mechanism

15

Virtualization Cost with Different Callgate Mechanism

16

Virtualization Cost with Different Callgate Mechanism

16

Thread Scalability: Near Consistent Overhead with More Thread

17

Thread Scalability: Near Consistent Overhead with More Thread

17

16%

Thread Scalability: Near Consistent Overhead with More Thread

17

16%

Thread Scalability: Near Consistent Overhead with More Thread

17

23%

Compatibility Test for the Signal and Multithreading

● Linux Test Project (LTP) provides regression and conformance to

the kernel

● The Endokernel passed 95.95% of the LTP test cases

● The failed cases are not related to thread or signal compatibility

○ Security-related

○ Kernel Side-Effect

○ Endokernel as a secondary loading

○ Memory Layout

18

Takeaways

● For an in-process monitor, thread safety is not as simple as just adding locks

● Weak Metadata Synchronization
○ Conservative monitor state updates to achieve safe results even in cases of unsynchronized

operations

● Signals Virtualization
○ Complete virtualization of signal behavior within the monitor to avoid synchronization with the kernel

● High Memory Access Bypass
○ Locating these patterns through source code analysis, enabling for case-by-case examination

● <5.5% overhead on nginx and lighttpd; ~30% overhead on curl with nex-sud

● ~23% overhead with increasing thread count

● Passes 95% of LTP tests with insignificant failed cases

● Source code: https://github.com/endokernel/test/

● Q&A
19

	Slide 1: Endokernel: A Thread Safe Monitor for Lightweight Subprocess Isolation
	Slide 2: Process provide isolation but when exploited enable access to the entire runtime
	Slide 3: Process provide isolation but when exploited enable access to the entire runtime
	Slide 4: Process provide isolation but when exploited enable access to the entire runtime
	Slide 5: Privilege Separation with In-process Secure Monitor
	Slide 6: Privilege Separation with In-process Secure Monitor
	Slide 7: Privilege Separation with In-process Secure Monitor
	Slide 8: Privilege Separation with In-process Secure Monitor
	Slide 9: Privilege Separation with In-process Secure Monitor
	Slide 10: Existing Works Fails to Secure Multi-threaded Monitor
	Slide 11: Existing Works Fails to Secure Multi-threaded Monitor
	Slide 12: Existing Works Fails to Secure Multi-threaded Monitor
	Slide 13: Endokernel Design
	Slide 14: Challenge: The kernel does not cooperate with the monitor
	Slide 15: General Syscalls: Monitor/Kernel Synchronization
	Slide 16: General Syscalls: Monitor/Kernel Synchronization
	Slide 17: General Syscalls: Monitor/Kernel Synchronization
	Slide 18: General Syscalls: Monitor/Kernel Synchronization
	Slide 19: General Syscalls: Monitor/Kernel Synchronization
	Slide 20: General Syscalls: Monitor/Kernel Synchronization
	Slide 21: General Syscalls: Monitor/Kernel Synchronization
	Slide 22: Solution: Weak Metadata Synchronization
	Slide 23: Signal: Intermediate States Exposed by Sigreturn
	Slide 24: Signal: Intermediate States Exposed by Sigreturn
	Slide 25: Signal: Intermediate States Exposed by Sigreturn
	Slide 26: Signal: Intermediate States Exposed by Sigreturn
	Slide 27: Signal: Intermediate States Exposed by Sigreturn
	Slide 28: Signal: Intermediate States Exposed by Sigreturn
	Slide 29: Signal: Intermediate States Exposed by Sigreturn
	Slide 30: Signal: Intermediate States Exposed by Sigreturn
	Slide 31: Solution: Fully Virtualized Signal
	Slide 32: Solution: Fully Virtualized Signal
	Slide 33: Solution: Fully Virtualized Signal
	Slide 34: Solution: Fully Virtualized Signal
	Slide 35: Solution: Fully Virtualized Signal
	Slide 36: Highmem: Bypass Pattern and Delayed Memory Access
	Slide 37: Highmem: Bypass Pattern and Delayed Memory Access
	Slide 38: Highmem: Bypass Pattern and Delayed Memory Access
	Slide 39: Solution: Extra Policy with Syscalls Analysis
	Slide 40: Evaluation
	Slide 41: Virtualization Cost with Different Callgate Mechanism
	Slide 42: Virtualization Cost with Different Callgate Mechanism
	Slide 43: Virtualization Cost with Different Callgate Mechanism
	Slide 44: Virtualization Cost with Different Callgate Mechanism
	Slide 45: Virtualization Cost with Different Callgate Mechanism
	Slide 46: Virtualization Cost with Different Callgate Mechanism
	Slide 47: Virtualization Cost with Different Callgate Mechanism
	Slide 48: Virtualization Cost with Different Callgate Mechanism
	Slide 49: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 50: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 51: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 52: Thread Scalability: Near Consistent Overhead with More Thread
	Slide 53: Compatibility Test for the Signal and Multithreading
	Slide 54: Takeaways

