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Process provide isolation but when exploited enable 

access to the entire runtime

● Compartmentalize the application to improve security 

● Fast, fine-grained and high-performance isolation with hardware assistance

● Monitors are used to manage the user space isolation by previous work
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Privilege Separation with In-process Secure Monitor

User Application● Kernel unaware of isolation policy and violate the policy
○ Filtering syscalls to ensure the kernel doesn’t break the isolation 

policy in user space

● Monitor determines whether the system call is legitimate

● BUT, making the right policy decisions in 

multithreading is harder than you think 

● => “Secure” Monitor is NOT actually secure

Secure Monitor itself becomes the problem!

Parser … TLS

Kernel
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Existing Works Fails to Secure Multi-threaded Monitor

● Monitor needs truth about the system to make right decision
○ Which memory address belongs to whom? Is this file descriptor valid? …

● System states changed via syscalls and signals: easy if only one thread

● Gap: changes in state and updates in the monitor are never synchronized
○ The kernel maintains its internal consistency but not for the in-process monitor

○ Outdated or incorrect state will be used

Monitor makes decisions based on incorrect information!

Monitor 

mmap
Check gap Mmap 

syscall
Updategap

5



Existing Works Fails to Secure Multi-threaded Monitor

● Monitor needs truth about the system to make right decision
○ Which memory address belongs to whom? Is this file descriptor valid? …

● System states changed via syscalls and signals: easy if only one thread

● Gap: changes in state and updates in the monitor are never synchronized
○ The kernel maintains its internal consistency but not for the in-process monitor

○ Outdated or incorrect state will be used

Monitor makes decisions based on incorrect information!

Monitor 

mmap
Check gap Mmap 

syscall
Updategap

5



Existing Works Fails to Secure Multi-threaded Monitor

● Monitor needs truth about the system to make right decision
○ Which memory address belongs to whom? Is this file descriptor valid? …

● System states changed via syscalls and signals: easy if only one thread

● Gap: changes in state and updates in the monitor are never synchronized
○ The kernel maintains its internal consistency but not for the in-process monitor

○ Outdated or incorrect state will be used

Monitor makes decisions based on incorrect information!

Monitor 

mmap
Check gap Mmap 

syscall
Check Updategap

5



Endokernel Design
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Challenge: The kernel does not cooperate with the monitor

● General Syscalls: memory metadata, file descriptors
○ open/read/write/mmap/mprotect/…

○ States change before/after syscalls

● Signals: Kernel-involved context switches
○ Signal delivery and sigreturn can alter control flow and privilege

● Highmem: access physical memory and bypass checks
○ Hidden, complex, delayed and overlooked

○ Requires case-by-case analysis and solutions

Endokernel – Build a thread-safe monitor!

User Application

Parser … TLS

Kernel

In-process monitor

Highmem

SyscallSignal
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General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

D1D2D2Domains:

Memory

Domain 1

8



General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

Allow unmap for D1

Remove address from D1
D1D2D2Domains:

Memory

Domain 1Unmap

8



General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

No map found

Add address to D2

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8



General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)
Allow write for D2

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8



General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)

write(...)

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8



General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)

write(...)
D1’s data written to file

write(...)

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

8



General Syscalls: Monitor/Kernel Synchronization 

● Assume D1 owns a secret memory region, and D2 wants to steal it

Thread 3 Thread 2 Thread 1 Monitor Kernel

unmap

mmap

write(...)

write(...)
write(...)

D1D2D2Domains:

Memory

Domain 1UnmapDomain 2

D2 steals the data

8



Solution: Weak Metadata Synchronization

● Tolerate inconsistencies before and after system calls; ensure they only 

lead to inspection failures

● Mark pages involved in system calls; block other calls that would change 

their properties while the memory is in use 

● Allow concurrent invocation of system calls if they don't alter page 

properties

● Ensure correct decisions are made, even with Kernel-Endokernel 

inconsistencies, without violating policy.

Desynchronization never violates security policies

9



Signal: Intermediate States Exposed by Sigreturn

● Signal delivery and return are meant to switch contexts

● Different contexts have different permissions defined by the policy

● Unfortunately, the kernel cannot correctly handle these permissions, and 

can break the policy during context switches

Kernel Signal Monitor Signal App

App Sigreturn Monitor Sigreturn Kernel
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Solution: Fully Virtualized Signal

● Endokernel acts as a middleware

● Endokernel receives signals from the kernel
○ Stores signals in a pending queue

○ Returns control to the kernel with sigreturn

● Endokernel delivers signals to the user
○ Creates a new sigcontext and sigframe.

○ Simulates the user's sigreturn syscall

Kernel

User

Endokernel

Module 1

Signal Virt

Virtualized secure and compatible signals
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Highmem: Bypass Pattern and Delayed Memory Access

● Various triggering mechanisms
○ /sys/kernel/tracing/user_events_data

○ Process_vm_readv, Sendmsg with MSG_ZEROCOPY

● Access physical pages with high memory and bypass permission check

○ Some code paths checked

■ __get_user_pages -> check_vma_flags -> arch_vma_access_permitted

○ Nonetheless, sendmsg delayed the memory access

○ The MMU may change after the check

Kernel read
Virtual

Memory
read MMU read Physical

Memory
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Solution: Extra Policy with Syscalls Analysis

● Traced the syscalls in the kernel that use certain APIs most of which 

are related to driver and ioctl

● Restrictions need to be applied based on specific use cases
○ For example, adding extra policies to prohibit the use of zero copy or prevent the 

memory from being unmapped

● Kernel features that improve efficiency can make in-process 

monitoring more challenging

Identified patterns, allowing for case-by-case analysis
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Evaluation
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Virtualization Cost with Different Callgate Mechanism
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Thread Scalability: Near Consistent Overhead with More Thread
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Compatibility Test for the Signal and Multithreading 

● Linux Test Project (LTP) provides regression and conformance to 

the kernel

● The Endokernel passed 95.95% of the LTP test cases

● The failed cases are not related to thread or signal compatibility

○ Security-related

○ Kernel Side-Effect

○ Endokernel as a secondary loading

○ Memory Layout
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Takeaways

● For an in-process monitor, thread safety is not as simple as just adding locks

● Weak Metadata Synchronization
○ Conservative monitor state updates to achieve safe results even in cases of unsynchronized 

operations

● Signals Virtualization 
○ Complete virtualization of signal behavior within the monitor to avoid synchronization with the kernel

● High Memory Access Bypass
○ Locating these patterns through source code analysis, enabling for case-by-case examination

● <5.5% overhead on nginx and lighttpd; ~30% overhead on curl with nex-sud

● ~23% overhead with increasing thread count

● Passes 95% of LTP tests with insignificant failed cases

● Source code: https://github.com/endokernel/test/

● Q&A
19
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