ORANalysit: Systematic Testing Framework for
Open RAN Implementations

Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan, Syed Rafiul Hussain

Systems and Network Security (SyNSec) Lab
Department of Computer Science and Engineering
The Pennsylvania State University

oy SyN¢

Mobile Network’s Transition to 56

RRC

PDCP m . .
- @) + Support diverse devices and use cases

RLC SR

2
Mac PR
RF
Mobile Core Network

- RRC

PDCP .

e GO

MAC PR

PHY RAN

RF

Mobile Network’s Transition to 56

RRC
PDCP m . .
- @) + Support diverse devices and use cases
RLC SR
2
Mac PR
1 PHY ~ RAN
P
- RF
Sl
Mobile Core Network
T RRC
0—0 PDCP .
e GO
mac B
Y
PHY RAN

RF

Mobile Network’s Transition to 56

6_3
I

.1
‘.

P

O

E n
H
H

+ Support diverse devices and use cases

+ Improved interoperability through
disaggregated RAN architecture

- Network optimization performed at
each RAN node, lacking high-level view
of the entire network

RRC

CTTppcp TTTTTTTTTTTTTTTTTTTTTTA
RLC () E
MAC A_ :
PHY RU i
RF 50 ;
RRC I
PDCP |
RLC () £-Cu |
MAC A_ 1:*:5 :
PHY RU |
RF |

5G Core Network

+ RIC to decouple RAN optimization

+ Standardized interface for interoperability

+ Promotes using hardware from different vendors,

(((;))) .+ Near-Real-Time RIC optimizes RAN operations
i and most optimal software from third-parties

Standardized RAN Intelligent Controllers (RIC)

Interface Near-Real-Time RIC

5G Core Network

P
E@Q
Q>

“V'
OT?‘

RAN Intelligent Controller (RIC) Architecture

Traffic steering, power optimization, network slice management ...

Near-RT RIC

E xApp 1 XApp 2 °© oo xApp N

Internal Messaging System Service Based
Conflict Subscription : oL ... Architecture
Mitigation Management :

E2 Termination (E2T)

ﬁ E2 Interface

X RAN CXES (%))
ANV AN4

= ==

RAN Intelligent Controller (RIC) Architecture

Traffic steering, power optimization, network slice management ...

Near-RT RIC

o S t []
: >a81ne System Service-Based
- : i
Conflict Subscription . . Architecture
Mitigation Management S

E2 Term nation (E2T)

RN ((ce2))
\‘é E"

=

RAN Intelligent Controller (RIC) Architecture

Traffic steering, power optimization, network slice management ...

Near-RT RIC

saging System Service-Based
: :
Canli Subscription oL e Architecture

E2 Termination (E2T)

(%))
ANV AN4

Attack Surface of O-RAN RIC

e Software-centric RIC with third-

party providers [Near-RTRIC ...
* More likely to contain software B Aepl [xApp2
bugs/vulnerabilities : ' _ :
. .) Internal Messaging System
* Misconfiguration, dependency =ﬂ — :
ofe . o o Conflict ubscription .
vulnerability, insufficient checks Mitigation Management | 1 SDL ¢« o
* Heterogeneous RAN nodes & user E2 Termination (E2T)

devices

terface

* RIC faces unpredictable, possible - —

malicious data

* Unexpected/unsanitized traffic from
RAN node, malicious UE behavior

Attack Surface of O-RAN RIC

e Software-centric RIC with third-
party providers

* More likely to contain software
bugs/vulnerabilities

* Misconfiguration, dependency
vulnerability, insufficient checks

* Heterogeneous RAN nodes & user
devices

* RIC faces unpredictable, possible
malicious data

* Unexpected/unsanitized traffic from
RAN node, malicious UE behavior

O-RAN.WG11.Security-Near-RT-RIC-xApps-TR.0-R003-v05.00

6.17 Solution #16: Additional security measures for the E2
interface

6.17.1 Introduction

The Near-RT RIC receives Near real-time information from the E2 Nodes across the E2 interface.
While the E2 interface is considered secure with controls that provide confidentiality, integrity, and
mutual authentication, the Near-RT RIC should not assume that the data received is valid and

trusted. The Near-RT RIC should provide built-in security compliant with a zero-trust architecture

based upon the principle that perimeter security is insufficient to protect against internal threats.

6.17.2 Solution details

Security controls for the Near-RT-RIC that could be implemented as part of its E2 Termination include:
1. Validate received values for validity and range
2. Provide rate limiting on E2 interface to prevent resource exhaustion and DoS
3. Implement security logging for each of the above failure events

O-RAN Study on Security for Near Real Time RIC and xApps 5.0

9

Potential Vulnerabilities in RIC

Service Management and Orchestration System (SMO)

A1l Interface

Near-RT RIC

E2 Interface

10

Potential Vulnerabilities in RIC

Service Management and Orchestration System (SMO)

A1l Interface

Near-RT RIC

xApp 2 °© oo

Internal Messaging System

5 = R ———
Conflict Su on . v e
Mitigation Ma ent :

E2 Terminatign (E2T)

E2 Interface

RAN

Potential Vulnerabilities in RIC

Service Management and Orchestration System (SMO)

A1l Interface

Near-RT RIC

xApp 2 °© oo

Internal Messaging System

5 = R ———
Conflict Su on . v e
Mitigation Ma ent :

E2T)

E2 Termina

E2 Interface

RAN

Potential Vulnerabilities in RIC

Service Management and Orchestration System (SMO)

A1l Interface

Near-RT RIC

xApp 2 °© oo

Internal Messaging System

5 = R ———
Conflict Su on . v e
Mitigation Ma ent :

E2T)

E2 Termina

E2 Interface

RAN

Potential Vulnerabilities in RIC

Service Management and Orchestration System (SMO)

@ Al Interface ~ Focus of this work:

--------------------------------- NearRIRIC ... e Vulnerabilities triggering:

xApp 2 °© oo

* Program crashes

* Program hangs

Internal Messaging System e .
: : * Specific issues:
— =

Conflict Su ion oL * Qut-of-bound access
Mitigation Ma ent : .
: * Null pointer dereference

E2T) * Other memory issues

E2 Termina

E2 Interface

RAN

14

Can we develop an automated reasoning
framework to analyze the robustness and
operational integrity of O-RAN
implementations, providing high-security
assurances prior to their commercial

deployments? a
@
&

Design

Limitations of Off-the-Shelf Methods

* Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test S—

one program at a time
xApp 1 xApp 2 « oo xApp N

* Requires details aboutthe | —/——° — =
expected message

Con.flict Subsc;iption :
* Vary across different Vitigation | | Management | “

implementations

Internal Messaging System

E2 Termination (E2T)

* High number of false-positives

(unexploitable vulnerabilities)

17

Limitations of Off-the-Shelf Methods

* Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test
one program at a time

* Requires details about the
expected message xApp 1
* Vary across different

. . Message Format? =
implementations

Protocol?

Reception Point? Test Input

* High number of false-positives
(unexploitable vulnerabilities)

18

Limitations of Off-the-Shelf Methods

* Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test
one program at a time

* Requires details about the
expected message

* Vary across different

. . Message Format? =
implementations

Protocol?

Reception Point? Test Input

* High number of false-positives
(unexploitable vulnerabilities)

19

Limitations of Off-the-Shelf Methods

* Existing protocol testers (AFLNET,

BooFuzz, Restler, Frizzer) test

_______________________ Seawae
one program at a time
* Requires details about the ~ “I """""""" S
hateraatidesqaging System
expected message . :
o V d.ff ¢ Conflict Subscription
ary across dirreren Mitigation Management —
implementations m— 7 g

* High number of false-positives

(unexploitable vulnerabilities) E2 interface

20

ORANalysts Approach: End-to-End Testing

* Send test inputs only

through E2 interface.

Near-RT RIC

* Automatic test input

genera’rion fOr fhe Hatermetidesaaging System
standardized E2 protocol el
Mitigation Management SDL

* All found bugs are
exploitable from a

E2 Terminlntion (E2T)
|

misbehaving RAN I |
E2 interface

Test
Input 21

Challenge 1: Generating Targeted and
Meaningful Test Inputs

* Challenge: generate inputs that farget xApp
can reach the target components
(avoid under-constraint) while
maintain variability for effective
testing (avoid over-constraint).

Internal Routing

Test

Input 22

Challenge 1: Generating Targeted and
Meaningful Test Inputs

over-constraint

* Challenge: generate inputs that m

can reach the target components
Internal Routing

(avoid under-constraint) while
maintain variability for effective
testing (avoid over-constraint).
under-constraint ” . °

Test
Input 23

Solution 1: Layered Testing Approach

* Layered approach:
* First test the component directly connected with E2 — E2T Target xApp
* Gradually move to deeper components

* At each component, find appropriate constraints so the
test inputs can reach the next component.

Internal Routing

* Challenge: How can we find these layer- ﬁ
dependencies between components?

Test
Input 24

* Solution: Dynamic tracing

Challenge 2: Enumerate Appropriate

Constraints

* Dynamic tracing may miss execution paths
in each components.

Solution:

* Collects entry & exit basic blocks in each
component during dynamic tracing

» Applying Static analysis to reliably find

all execution paths & associated
conditions

Target xApp

Internal Routing

Challenge 2: Enumerate Appropriate
Constraints

* Dynamic tracing may miss execution paths

in each components. Target xApp

* Collects entry & exit basic blocks in each I Entryl

component during dynamic tracing

Exit
- Applying STatiC/aNaLSIS to reliably find M

all execution paths & associated I
conditions

Test
Input 26

Challenge 2: Enumerate Appropriate
Constraints

* Dynamic tracing may miss execution paths

in each components. Target xApp

* Collects entry & exit basic blocks in each I Entryl

component during dynamic tracing

Exit
» Applying Static analysis to reliably find

all execution paths & associated I
conditions

Test
Input 27

Challenge & Solution 3: Efficient Static Analysis

* Challenge: due to complex checks and validation logics performed in RIC
components, static analysis runs into path explosion problem

* One component may contain over 6,000 functions and over 100,000 LoC

Solution:

* PDG-based view of control Validating Function:
dependencies to find critical conditions ;= (

* Selectively analyze functions validating
inputs, ignoring generic functions (e.g., Generic Function:
network operations, data retrieval) = LR

28

ORANalyst Architecture

* Preprocessing Dependency Analysis and Testing Runtime Analysis

* Evolutionary feedback-driven fuzz testing

Runtime Analysis
(Testing)

Runtime
Monitor

Dependency . .
A Q) (?)
Analysis @® Bemon(A d RIC .
Preprocessin Deployment .
Source (Prep 8 Instrumented — _p. — C_LT
Code Code RIC Deplownent Operatio Trace [l: -]I [l: -]I [I: -]l %::{(—
Instrumentor E J Trace Analyzer I I : | |
= Entry, Emt BBs Component E2T
i \/Dependency A\ e
... .
-
Input

Static] Input { Message] Generated

. Scheduler)

]
J
: Analysis J Constraints Mutator J Test Input
I
I

| Testing Input ASN.1 Mes.sz'lge T Fitness
2 Definition Score

 Generation

4 Y
Feedback
; Collector)

()
Test l() Input
Input Sender

Code Coverage

Crashing
Inputs &
Crash
Logs

E

Feedback

Y

29

Evaluation

Evaluation Setup & Result

Evaluated on both available commercially adopted, open-source O-RAN compliant
implementations on their latest releases:

* O-RAN-SC (I release) A

e SD-RAN (1.4 release) =H-=A

Evaluated on 10 components across the two implementations, each for 24 hours.

* O-RAN-SC: E2T, subscription manager, E2 manager, routing manager, Kpimon xApp
* SD-RAN: E2T, topology management, Rimedo-ts xApp, Kpimon xApp, PCl xApp

Found 19 critical flaws in RIC components and xApps that can lead to DoS of the RIC
* Memory Corruptions
* Incorrect Error Handlings

* Thread Issue

15 CVEs have been assigned to track all 19 issues

* CVE-2024-25377,-29420, -34043, 34044, -34045, -34046, -34047, -34048, -52724, -52725,
-52726, -52727,-52728, -34049, -34050

31

Vulnerable Message Flows

EoT (= A ‘—
—— XApp =@
—=

E2SetupRequest

E2SetupResponse

E2NodeConfigUpdate _ 1

......................).

RICSubscriptionRequest

RICSubscripEcionResponse » Required Messages

Indicatior}Message """"""" » Optional Messages

Vulnerability Impact
* Crashed and irresponsive component and applications
* Potential unauthorized memory access

* Communication channel blockage with no error message

32

Sample Identified Issues:
Insufficient Checks

int
& ;
()5
int [
for(int 1=0;1i<
// further processing
}

O-RAN-SC’s KPIMon xApp
ric-app-kpimon-go/e2sm/wrapper.c

Memory violations due to negative-sized array initialization

33

Comparative Analysis & Ablation Studies

PY M - - - #- ORANalyst ~* ORANalyst w/o grammar BooFuzz 4 Radamsa
Compqred dgdlnST Stdte Of the drt """"" ORANalyst w/o input constraints AFINET * Radamsa-filter
protocol testers and fuzzers o &] $

of. AdA
o] - AdALAL — ;
. o e SN ahaa® o et L L Lt
* 24-hour test time and same initial corpus i TR e A M P 2
O >Q\\Q il (" T ..M-“""“'"" "qu | :5:: “':. 3v7
° °) z PRT S A .S 22

* Metrics: code coverage, issues found, % 2 oS I & 1
decoded test inputs, % reaching deep ST T S T
components - SR T ESSs 5 ESE S

E2T kpimon

O-RAN-SC Component E2T Kpimon

Fuzzer crashes corpus cover % decoded crashes corpus bbcover edge cover % reaching xApp % decoded
ORANalyst 3 2149 4326 72.35 3 73 1838 910 100/100 55.64
ORANalyst w/o input constraints 3 2149 4326 72.35 1 47 1828 907 47.27/59.01 53.50
ORANalyst w/o grammar 0 1433 4647 3.9 1 59 1831 906 40.64/80.81 16.76
AFLNET 0 245 3663 21.78 0 41 1824 901 32.81/97.83 12.37
BooFuzz 1 427033* 3655 81.96 1 427033* 1824 899 10.71/11.65 33.40
Radamsa 0 1323 3916 3.76 0 66 1827 901 11.39/78.20 4.40
Radamsa-filter 0 137 3467 100 1 35 1820 896 62.54/62.54 86.13

34

Conclusion

* ORANalyst: first testing framework to test the operational robustness of
O-RAN’s service-based RIC implementations.

* Combines dynamic tracing with effective static analysis

* Evaluation of ORANalyst on two open-source commercially-adopted

RIC implementations reveals 19 previously undiscovered vulnerabilities,
with 15 CVEs assigned.

* ORANalyst outperforms state-of-the-art protocol testers in code
coverage, issues found, and effectiveness of generated inputs.

* ORANalyst is available at github.com/SyNSec-den/ORANalyst

35

SyNE

ORANalyst: Systematic Testing Framework
for Open RAN Implementations

https://github.com/SyNSec-den/ORANalyst
Tianchang Yang

Contact: tzy5088@psu.edu

tianchang-yang.github.io

36

