
ORANalyst: Systematic Testing Framework for
Open RAN Implementations

Tianchang Yang, Syed Md Mukit Rashid, Ali Ranjbar, Gang Tan, Syed Rafiul Hussain

Systems and Network Security (SyNSec) Lab
Department of Computer Science and Engineering

The Pennsylvania State University

+ Support diverse devices and use cases

Mobile Network’s Transition to 5G

RAN

RAN

Mobile Core Network

RRC

PDCP

RLC

MAC

PHY

RF

RRC

PDCP

RLC

MAC

PHY

RF

1

+ Support diverse devices and use cases

Mobile Network’s Transition to 5G

RAN

RAN

Mobile Core Network

RRC

PDCP

RLC

MAC

PHY

RF

RRC

PDCP

RLC

MAC

PHY

RF

2

RRC

PDCP

RLC

MAC

PHY

RF

RRC

PDCP

RLC

MAC

PHY

RF

+ Support diverse devices and use cases

+ Improved interoperability through
disaggregated RAN architecture

- Network optimization performed at
each RAN node, lacking high-level view
of the entire network

RU

RU

5G Core Network

5G RAN

RRC

PDCP

RRC

PDCP

RLC

MAC

PHYPHY

RF

RLC

MAC

PHYPHY

RF

CU

DU

Mobile Network’s Transition to 5G

3

O-RU

O-RU

Open RAN

5G Core Network5G RAN

+ RIC to decouple RAN optimization

+ Near-Real-Time RIC optimizes RAN operations

+ Standardized interface for interoperability

+ Promotes using hardware from different vendors,
and most optimal software from third-parties

RAN Intelligent Controllers (RIC)

Near-Real-Time RIC
Standardized

Interface O-CU

O-DU

4

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 1 xApp 2 xApp N. . .

RAN

E2 Interface

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

. . .

Traffic steering, power optimization, network slice management …

5

Service-Based
Architecture

RAN Intelligent Controller (RIC) Architecture

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 1 xApp 2 xApp N. . .

RAN

E2 Interface

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

. . .

Traffic steering, power optimization, network slice management …

Throughput, traffic
volume, SNR, RSRP, etc…

6

Service-Based
Architecture

RAN Intelligent Controller (RIC) Architecture

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 1 xApp 2 xApp N. . .

RAN

E2 Interface

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

. . .

Traffic steering, power optimization, network slice management …

RAN Control Message

7

Service-Based
Architecture

RAN Intelligent Controller (RIC) Architecture

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 1 xApp 2 xApp N. . .

RAN
E2 Interface

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

. . .

Attack Surface of O-RAN RIC

• Software-centric RIC with third-
party providers
• More likely to contain software

bugs/vulnerabilities
• Misconfiguration, dependency

vulnerability, insufficient checks

• Heterogeneous RAN nodes & user
devices
• RIC faces unpredictable, possible

malicious data
• Unexpected/unsanitized traffic from

RAN node, malicious UE behavior
8

Attack Surface of O-RAN RIC

O-RAN Study on Security for Near Real Time RIC and xApps 5.0

9

• Software-centric RIC with third-
party providers
• More likely to contain software

bugs/vulnerabilities
• Misconfiguration, dependency

vulnerability, insufficient checks

• Heterogeneous RAN nodes & user
devices
• RIC faces unpredictable, possible

malicious data
• Unexpected/unsanitized traffic from

RAN node, malicious UE behavior

Service Management and Orchestration System (SMO)
Non-RT RIC

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

A1 Interface

xApp 1 xApp 2 xApp N. . .

RAN

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

E2 Interface

. . .

Potential Vulnerabilities in RIC

O-DUO-CU
10

Service Management and Orchestration System (SMO)
Non-RT RIC

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

A1 Interface

xApp 1 xApp 2 xApp N. . .

RAN

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

E2 Interface

. . .

Potential Vulnerabilities in RIC

O-DUO-CU
11

Service Management and Orchestration System (SMO)
Non-RT RIC

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

A1 Interface

xApp 1 xApp 2 xApp N. . .

RAN

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

E2 Interface

. . .

Potential Vulnerabilities in RIC

O-DUO-CU
12

Service Management and Orchestration System (SMO)
Non-RT RIC

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

A1 Interface

xApp 1 xApp 2 xApp N. . .

RAN

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

E2 Interface

. . .

Potential Vulnerabilities in RIC

O-DUO-CU
13

Service Management and Orchestration System (SMO)
Non-RT RIC

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

A1 Interface

xApp 1 xApp 2 xApp N. . .

RAN

E2 Termination (E2T)

Internal Messaging System

O-DUO-CU O-RU

E2 Interface

. . .

Potential Vulnerabilities in RIC

O-DUO-CU
14

Focus of this work:
• Vulnerabilities triggering:
• Program crashes
• Program hangs

• Specific issues:
• Out-of-bound access
• Null pointer dereference
• Other memory issues

Can we develop an automated reasoning
framework to analyze the robustness and
operational integrity of O-RAN
implementations, providing high-security
assurances prior to their commercial
deployments?

15

Design

16

Limitations of Off-the-Shelf Methods

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 2 xApp N. . .

E2 Termination (E2T)

Internal Messaging System

xApp 1

• Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test
one program at a time
• Requires details about the

expected message
• Vary across different

implementations

• High number of false-positives
(unexploitable vulnerabilities)

. . .

17

Limitations of Off-the-Shelf Methods

xApp 1

• Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test
one program at a time
• Requires details about the

expected message
• Vary across different

implementations

• High number of false-positives
(unexploitable vulnerabilities)

Message Format?
Protocol?
Reception Point? Test Input

Fuzzer

18

Limitations of Off-the-Shelf Methods

xApp 1

• Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test
one program at a time
• Requires details about the

expected message
• Vary across different

implementations

• High number of false-positives
(unexploitable vulnerabilities)

Message Format?
Protocol?
Reception Point? Test Input

Fuzzer

19

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 1 xApp 2 xApp N. . .

E2 Termination (E2T)

Internal Messaging System

. . .

E2 interface

Limitations of Off-the-Shelf Methods

20

• Existing protocol testers (AFLNET,
BooFuzz, Restler, Frizzer) test
one program at a time
• Requires details about the

expected message
• Vary across different

implementations

• High number of false-positives
(unexploitable vulnerabilities)

Near-RT RIC

SDL
Subscription
Management

Conflict
Mitigation

xApp 1 xApp 2 xApp N. . .

E2 Termination (E2T)

Internal Messaging System

. . .

• Send test inputs only
through E2 interface.
• Automatic test input

generation for the
standardized E2 protocol
• All found bugs are

exploitable from a
misbehaving RAN

ORANalyst’s Approach: End-to-End Testing

Test
Input

E2 interface

21

Challenge 1: Generating Targeted and
Meaningful Test Inputs

•Challenge: generate inputs that
can reach the target components
(avoid under-constraint) while
maintain variability for effective
testing (avoid over-constraint).

Target xApp

Internal Routing

E2T

22

Test
Input

Challenge 1: Generating Targeted and
Meaningful Test Inputs

•Challenge: generate inputs that
can reach the target components
(avoid under-constraint) while
maintain variability for effective
testing (avoid over-constraint).

Target xApp

Internal Routing

E2T

23

over-constraint

under-constraint

Test
Input

Solution 1: Layered Testing Approach

• Layered approach:
• First test the component directly connected with E2 – E2T
• Gradually move to deeper components
• At each component, find appropriate constraints so the

test inputs can reach the next component.

Target xApp

Internal Routing

E2T• Challenge: How can we find these layer-
dependencies between components?
• Solution: Dynamic tracing

24

Dynamic Tracing

Dynamic Tracing

Dynamic Tracing

Test
Input

Target xApp

Internal Routing

Challenge 2: Enumerate Appropriate
Constraints

• Dynamic tracing may miss execution paths
in each components.

E2T

Test
Input

Missed Missed

25

Solution:
• Collects entry & exit basic blocks in each

component during dynamic tracing

• Applying static analysis to reliably find
all execution paths & associated
conditions

Target xApp

Internal Routing

Challenge 2: Enumerate Appropriate
Constraints

• Dynamic tracing may miss execution paths
in each components.

E2T

Test
Input

Missed
Entry

Exit

Exit

Entry

26

Solution:
• Collects entry & exit basic blocks in each

component during dynamic tracing

• Applying static analysis to reliably find
all execution paths & associated
conditions

Missed

Target xApp

Internal Routing

Challenge 2: Enumerate Appropriate
Constraints

• Dynamic tracing may miss execution paths
in each components.

E2T

Test
Input

MissedStatic
Analysis

Static
Analysis

Entry

Exit

Exit

Entry

27

Solution:
• Collects entry & exit basic blocks in each

component during dynamic tracing

• Applying static analysis to reliably find
all execution paths & associated
conditions

Missed

Validating Function:

Generic Function:

Challenge & Solution 3: Efficient Static Analysis

28

Solution:
• PDG-based view of control

dependencies to find critical conditions
• Selectively analyze functions validating

inputs, ignoring generic functions (e.g.,
network operations, data retrieval)

• Challenge: due to complex checks and validation logics performed in RIC
components, static analysis runs into path explosion problem
• One component may contain over 6,000 functions and over 100,000 LoC

ORANalyst Architecture

• Preprocessing Dependency Analysis and Testing Runtime Analysis

• Evolutionary feedback-driven fuzz testing

29

Evaluation

30

Evaluation Setup & Result
• Evaluated on both available commercially adopted, open-source O-RAN compliant

implementations on their latest releases:
• O-RAN-SC (I release)
• SD-RAN (1.4 release)

• Evaluated on 10 components across the two implementations, each for 24 hours.
• O-RAN-SC: E2T, subscription manager, E2 manager, routing manager, Kpimon xApp
• SD-RAN: E2T, topology management, Rimedo-ts xApp, Kpimon xApp, PCI xApp

• Found 19 critical flaws in RIC components and xApps that can lead to DoS of the RIC
• Memory Corruptions
• Incorrect Error Handlings
• Thread Issue

• 15 CVEs have been assigned to track all 19 issues
• CVE-2024-25377, -29420, -34043, 34044, -34045, -34046, -34047, -34048, -52724, -52725,

-52726, -52727, -52728, -34049, -34050
31

Vulnerable Message Flows

Vulnerability Impact

• Crashed and irresponsive component and applications

• Potential unauthorized memory access

• Communication channel blockage with no error message
32

Sample Identified Issues:
 Insufficient Checks

O-RAN-SC’s KPIMon xApp
ric-app-kpimon-go/e2sm/wrapper.c

Memory violations due to negative-sized array initialization

33

Comparative Analysis & Ablation Studies

• Compared against state-of-the-art
protocol testers and fuzzers
• 24-hour test time and same initial corpus
• Metrics: code coverage, issues found, %

decoded test inputs, % reaching deep
components

34

Conclusion

35

• ORANalyst: first testing framework to test the operational robustness of
O-RAN’s service-based RIC implementations.
• Combines dynamic tracing with effective static analysis
• Evaluation of ORANalyst on two open-source commercially-adopted

RIC implementations reveals 19 previously undiscovered vulnerabilities,
with 15 CVEs assigned.
• ORANalyst outperforms state-of-the-art protocol testers in code

coverage, issues found, and effectiveness of generated inputs.
• ORANalyst is available at github.com/SyNSec-den/ORANalyst

Tianchang Yang

Contact: tzy5088@psu.edu

tianchang-yang.github.io

ORANalyst: Systematic Testing Framework
for Open RAN Implementations

https://github.com/SyNSec-den/ORANalyst

36

