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!
Completeness 
V always accepts valid statements

Soundness 
If P does not have a witness, V rejects 
statements with high probability

Zero Knowledge 
V learns nothing except that the 
statement is valid

Zero-Knowledge Proof [GMR85] 
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Problem: ZK RAM

mem[i]

STORE

mem

i

x

mem[i <- x]

ACCESS
mem

i
x mem[i]

r/w

if r/w = 0: mem
else: mem[i <- x]

Our ZK RAM in Recent Works 
ZK CPU [YHHKV, CCS ’24]
ZK ML [HCLWZYZ, USENIX Security ’24]
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soundness   
zero-knowledge

Over some large field 
(i.e. )

𝔽
|𝔽 | = λω(1)

Nonlinear gates:
  MUL, INPUT
Linear gates: 
  ADD, SCALE

# memory slots: n
# accesses: T

ACCESS
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Up to 
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“One shuffle makes a ROM”
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SZDL Lemma 
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Proving  uses only  MUL gates⃗x ∼ ⃗y 2n − 2

PV
10



Proving  uses only  MUL gates⃗x ∼ ⃗y 2n − 2

Preliminaries: Proof of a Permutation

p(X) = ∏
i

(X − ⃗x i)

q(X) = ∏
i

(X − ⃗y i)
⃗x ∼ ⃗y ⟺ p = q

Generalizes to vectors of tuples [DdSGOTV22]

10



Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

11



Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

11



Read-Only Memory

LOAD(i) 
Key Value

0 x[0]

1 x[1]

2 x[2]

12



Read-Only Memory

P

I know x[i]

Key insight: 
We just need to check P 

does not cheat

LOAD(i) 
Key Value

0 x[0]

1 x[1]

2 x[2]

12



Read-Only Memory

P

I know x[i]

Key insight: 
We just need to check P 

does not cheat

LOAD(i) 
Key Value

0 x[0]

1 x[1]

2 x[2]
How? 

Construct the “one-time” 
readable entries, and create 

a “reading history log”
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RAM must prevent 
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How? 
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How? 
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Then, prove the “time 
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Read-Only Memory

On an access, P 
gives two inputs: 
value and version

After T accesses, 
permutation check on 

length n+T vectors

2 INPUTs, 2 MULs per 
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1 x[1]

2 x[2]
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We implemented in the 
VOLE-based ZK setting 

[DIO21, YSWW21]

~600K random 
accesses per second 

on a 1 Gbps LAN

Evaluation

20



yyang811@gatech.edu

Thank you!

Q&A

• ePrint: https://eprint.iacr.org/2023/1115
• GitHub: https://github.com/gconeice/improved-zk-ram

mailto:yyang811@gatech.edu
https://eprint.iacr.org/2023/1115
https://github.com/gconeice/improved-zk-ram

