Two Shuffles Make a RAM:
Improved Constant Overhead
Zero Knowledge RAM

Yibin Yang, Georgia Tech Georgia ILLINOIS

David Heath, UIUC Tech' = .55 CuARPAIoH

Zero-Knowledge Proof [GMRS&5]

Zero-Knowledge Proof [GMRS&5]

Verifier

Zero-Knowledge Proof [GMRS&5]

3

1 5

98

3 3

N(Ph~|O Y| Ul

6 2|8

— N (@) O N

O | U1 A=W

4 9

3 /

Statement

Verifier

Zero-Knowledge Proof [GMRS&5]

5/3/4|16|7|8|9|1]|2
6/7(2|11|9/5(3|4|8

119(8(3/4(2[5/6]|7
8/ 5/9(7/6/1|4|2|3
412|6|8[5(3(7/9]|1

/711/319/2(4|8|5|6
961537284
218714|1|9|6|3|5
3/4/512/8|6]1|7|9

9

8

/

2

5

9

9

1

1

3

3

9

5

Statement

Q@
N
N
>
Q

k2

C

-

has a solution

Zero-Knowledge Proof [GMRS&5]

5/3/4|16|7|8|9|1]|2
6/7(2|11|9/5(3|4|8

119(8(3/4(2[5/6]|7
8/ 5/9(7/6/1|4|2|3
412|6|8[5(3(7/9]|1

/711/319/2(4|8|5|6
961537284
218714|1|9|6|3|5
3/4/512/8|6]1|7|9

9

8

/

2

5

9

9

1

1

3

3

9

5

Statement

Q@
N
N
>
Q

k2

C

-

has a solution

Zero-Knowledge Proof [GMRS&5]

5/3/4|16|7|8|9|1]|2
6/7(2|11|9/5(3|4|8

119(8(3/4(2[5/6]|7
8/ 5/9(7/6/1|4|2|3
412|6|8[5(3(7/9]|1

/711/319/2(4|8|5|6
961537284
218714|1|9|6|3|5
3/4/512/8|6]1|7|9

9

8

/

2

5

9

9

1

1

3

3

9

5

Statement

Q@
N
N
>
Q

k2

C

-

has a solution

Zero-Knowledge Proof [GMRS&5]

Completeness

V always accepts valid statements

N[N H O[T O D
| T O[NNI M|\
O M WNT|INCO[N|O |
DN AN[HOM| T[N OO
NO (O INDN|M|—|C0
O =M~ O[IN|F | N
TIN|O[OY O M| [N
MINODINDN|H|[WO|00| <
LN O —H|[0 | IIN[OYAN|M
M| —=| O LN
O 00
(@\
LN ™M (@)
N O O @\ i
—i o0] <
00)
™M (@) O
N | O 0| | IN

Zero-Knowledge Proof [GMRS&5]

Completeness
V always accepts valid statements

Soundness
If P does not have a witness, V rejects

statements with high probability

Zero-Knowledge Proof [GMRS&5]

Completeness
V always accepts valid statements

N h~ |00 O R0

OO INUIO | N|W
NN/ P[WOO|O[(IN| A
NI UI[O|ON[W|H O
R WINUIO[A|O|N
MO NP WE[INUT 0
R IOAOINIO|IN|[R~RIUTIW|O

WINOIN|~O|IEIOYWU
N WIOOIUTIMOINIOY B =
O UL, W[IN0OIN

Soundness
If P does not have a witness, V rejects
statements with high probability

|~ N (@) O |

O | U Q=W

Zero Knowledge
V' learns nothing except that the
statement is valid

Generic Zero-Knowledge Proof

Generic Zero-Knowledge Proof

9 y

l '
S -

|

Q

V P

Generic Zero-Knowledge Proof

| know Xx
such that

C(x) = 0.

Problem: ZK RAM

Problem: ZK RAM

mMem ¢
LOAD o
| C

Problem: ZK RAM

mMelimn ¢
| LOAD * 0 mem[|]
i 0

Problem: ZK RAM

| LOAD * 0 mem[|]
mem o
| o—9¢ STORE |

X ©

mMem ¢

Problem: ZK RAM

| LOAD * 0 mem[|]
meim o
. | ~° mem[i <- X
| C 0 STORE
X ¢

mMem ¢

Problem: ZK RAM

If r/w=0: mem
else: mem|i <- X]

1 ACCESS

Problem: ZK RAM

If r/w=0: mem
else: mem|i <- X]

o mem(i]
o mem|i <- X]

Our ZK RAM in Recent Works

ZK CPU [YHHKYV, CCS *24]
ZK ML [HCLWZYZ, USENIX Security *24]

Terminology

Terminology

NNy &
ACCESS -] + 0

[X ¢ :.

Terminology

completeness

: :- soundness
VB, B

[X ¢ :.

Terminology

completeness

. :' soundness
- £ zero-khrewtedge
Over some large field |

N Xy

Terminology

completeness

. :' soundness
i £ zero-knowledge
. '. Over some large field |

[X ¢ :.

Nonlinear gates:
MUL, INPUT

Linear gates:
ADD, SCALE

Terminology

completeness

. :' soundness
i £ zero-knowledge
. ‘. Over some large field |

[X ¢ :.

Nonlinear gates:
MUL, INPUT

Linear gates:
ADD, SCALE

Terminology

completeness

. :' soundness
i £ zero-knowledge
. ‘. Over some large field |

[X ¢ :.

Nonlinear gates:

MUL, INPUT # memory slots: n

Linear gates: # accesses: |
ADD, SCALE

Our Result

NNy =
ACCESS -] 4+ 0
. ;.

om0y

Our Result

NNy =
ACCESS - I + ¢

[X ¢ :.

Naive linear scan: O(1n)

Our Result

- :l
ACCESS - I + 0
- :. :.

Naive linear scan: O(1n)

V.S.

Our construction: O(T + n)

Our Result
. ,.

> S

N Xy

Naive linear scan: O(1n)
V.S.

Our construction: O(T + n)
Hidden constant: 10

6

Our Result

o) +

Naive linear scan: O(1n)
V.S.

Our construction: O(T + n)
Hidden constant: 10

6

.y
. ' Permutation Proof
Read Only Memory

Read/Write Memory

Constant-Overhead Zero-Knowledge for RAM Programs

Nicholas Franzese* Jonathan Katz! Steve Lu'* Rafail Ostrovsky? Xiao Wang*
Chenkai Weng*

Abstract

We show a constant-overhead interactive zero-knowledge (ZK) proof system for RAM pro-
grams, that is, a ZK proof in which the communication complexity as well as the running times
of the prover and verifier scale linearly in the size of the memory N and the running time 7°
of the underlying RAM program. Besides yielding an asymptotic improvement of prior work,
our implementation gives concrete performance improvements for RAM-based ZK proofs. In
particular, our implementation supports ZK proofs of private read/write accesses to 64 MB
of memory (22* 32-bit words) using only 34 bytes of communication per access, a more than
80x improvement compared to the recent BubbleRAM protocol. We also design a lightweight
RISC CPU that can efficiently emulate the MIPS-I instruction set, and for which our ZK proof
communicates only ~ 320 bytes per cycle, more than 10x less than the BubbleRAM CPU. In
a 100 Mbps network, we can perform zero-knowledge executions of our CPU (with 64 MB of
main memory and 4 MB of program memory) at a clock rate of 6.6 KHz.

1 Introduction

Zero-knowledge (ZK) proofs enable a prover P to convince a verifier V that the prover knows a
witness w on which a particular program P evaluates to 1 without revealing anything additional
about w. A series of works over the past several years (e.g., [GGPR13, JKO13, BCC*16, Grol6,
AHIV17, KKW18, BBB"18, XZZ"19, TS20, WYKW21]) has shown several highly efficient ZK
protocols, however for the most part these improved protocols have focused on the case where
the program P is represented as a boolean or arithmetic circuit. This makes such proof systems
somewhat difficult to apply to the arguably more natural setting where P is a program intended to
be run on a general-purpose CPU, that is, when P is represented as a program in the random-access
machine (RAM) model of computation. Although any such program can be converted to a circuit,
doing so can be challenging and time consuming; more importantly, it can lead to sub-optimal
performance as a general RAM program running in time 7" and using memory of size N requires a
circuit of size ©(T'N) to verify its execution.

Some prior work has shown ZK proofs in the RAM model of computation. Hu, Mohassel,
and Rosulek [HMR15], and subsequently Mohassel, Rosulek and Scafuro [MRS17], proposed an
approach in which the addresses of memory accesses are revealed to the verifier; to account for
that, they use oblivious RAM to make the original RAM program oblivious. Their focus was
on asymptotic performance, and to the best of our knowledge their protocols have never been
implemented. The TinyRAM framework [BCG*13, BCTV14, WSR™15] avoids the use of oblivious

*Northwestern University, {nicholasfranzese2026Qu, wangxiao@cs, ckweng@u}.northwestern.edu
"University of Maryland, jkatz2@gmail.com

*Stealth Software Technologies, Inc., steve@stealthsoftwareinc.com

SUCLA, rafail@cs.ucla.edu

Efficient Proof of RAM Programs from Any Public-Coin
Zero-Knowledge System

Cyprien Delpech de Saint Guilhem Emmanuela Orsini Titouan Tanguy
Michiel Verbauwhede

imec-COSIC, KU Leuven, Belgium
firstname.lastname@kuleuven.be

Abstract

We show a compiler that allows to prove the correct execution of RAM programs using any
zero-knowledge system for circuit satisfiability. At the core of this work is an arithmetic circuit
which verifies the consistency of a list of memory access tuples in zero-knowledge.

Using such a circuit, we obtain the first constant-round and concretely efficient zero-knowledge
proof protocol for RAM programs using any stateless zero-knowledge proof system for Boolean
or arithmetic circuits. Both the communication complexity and the prover and verifier run times
asymptotically scale linearly in the size of the memory and the run time of the RAM program;
we demonstrate concrete efficiency with performance results of our C++ implementation.

We concretely instantiate our construction with an efficient MPC-in-the-Head proof system,
Limbo (ACM CCS 2021). The C++ implementation of our access protocol extends that of Limbo
and provides interactive proofs with 40 bits of statistical security with an amortized cost of
0.42ms of prover time and 2.8KB of communication per memory access, independently of the size
of the memory; with multi-threading, this cost is reduced to 0.12ms and 1.8KB respectively. This
performance of our public-coin protocol approaches that of private-coin protocol BubbleRAM
(ACM CCS 2020, 0.15ms and 1.5KB per access).

1 Introduction

A zero-knowledge (ZK) proof is a fundamental cryptographic tool which proves that a statement
is true without revealing any other information. Since their introduction by Goldwasser, Micali
and Rackoff [GMRA85], ZK proofs have had a significant impact on cryptography and have been the
object of intense research work due to their theoretical importance and varied applicability.

Many types of ZK proof systems exist, each presenting different trade-offs between several
efficiency measures. While in blockchain applications, the main focus is on succinct proofs of
small statements [GGPR13, Grol6, Set20], another line of research has focused on prover effi-
ciency [JKO13, AHIV17, KKW18, BCR*19, DIO21, dOT21], while other works have successfully
constructed ZK proof systems for very large statements with good concrete efficiency [WYKW21,
YSWW21, WYX+21, BMRS21].

Unfortunately, these works focus mostly on statements represented as circuits, either Boolean
or arithmetic, which can incur a significant overhead to prove properties of large statements that
are more naturally represented as random-access machine (RAM) programs. Many interesting
functions and applications, such as private database search or verification of program execution,

Constant-Overhead Zero-Knowledge for RAM Programs

Nicholas Franzese* Jonathan Katz! Steve Lu'* Rafail Ostrovsky? Xiao Wang*
Chenkai Weng*

Abstract

We show a constant-overhead interactive zero-knowledge (ZK) proof system for RAM pro-
grams, that is, a ZK proof in which the communication complexity as well as the running times
of the prover and verifier scale linearly in the size of the memory N and the running time 7°
of the underlying RAM program. Besides yielding an asymptotic improvement of prior work,
our implementation gives concrete performance improvements for RAM-based ZK proofs. In
particular, our implementation supports ZK proofs of private read/write accesses to 64 MB
of memory (22* 32-bit words) using only 34 bytes of communication per access, a more than
80x improvement compared to the recent BubbleRAM protocol. We also design a lightweight
RISC CPU that can efficiently emulate the MIPS-I instruction set, and for which our ZK proof
communicates only ~ 320 bytes per cycle, more than 10x less than the BubbleRAM CPU. In
a 100 Mbps network, we can perform zero-knowledge executions of our CPU (with 64 MB of
main memory and 4 MB of program memory) at a clock rate of 6.6 KHz.

1 Introduction

Zero-knowledge (ZK) proofs enable a prover P to convince a verifier V that the prover knows a
witness w on which a particular program P evaluates to 1 without revealing anything additional
about w. A series of works over the past several years (e.g., [GGPR13, JKO13, BCC*16, Grol6,
AHIV17, KKW18, BBB"18, XZZ"19, TS20, WYKW21]) has shown several highly efficient ZK
protocols, however for the most part these improved protocols have focused on the case where
the program P is represented as a boolean or arithmetic circuit. This makes such proof systems
somewhat difficult to apply to the arguably more natural setting where P is a program intended to
be run on a general-purpose CPU, that is, when P is represented as a program in the random-access
machine (RAM) model of computation. Although any such program can be converted to a circuit,
doing so can be challenging and time consuming; more importantly, it can lead to sub-optimal
performance as a general RAM program running in time 7" and using memory of size N requires a
circuit of size ©(T'N) to verify its execution.

Some prior work has shown ZK proofs in the RAM model of computation. Hu, Mohassel,
and Rosulek [HMR15], and subsequently Mohassel, Rosulek and Scafuro [MRS17], proposed an
approach in which the addresses of memory accesses are revealed to the verifier; to account for
that, they use oblivious RAM to make the original RAM program oblivious. Their focus was
on asymptotic performance, and to the best of our knowledge their protocols have never been
implemented. The TinyRAM framework [BCG*13, BCTV14, WSR™15] avoids the use of oblivious

*Northwestern University, {nicholasfranzese2026Qu, wangxiao@cs, ckweng@u}.northwestern.edu
University of Maryland, jkatz20gmail.com

*Stealth Software Technologies, Inc., steve@stealthsoftwareinc.com

SUCLA, rafail@cs.ucla.edu

Up to ~ 20 X
Improvement

Efficient Proof of RAM Programs from Any Public-Coin
Zero-Knowledge System

Cyprien Delpech de Saint Guilhem Emmanuela Orsini Titouan Tanguy
Michiel Verbauwhede

imec-COSIC, KU Leuven, Belgium
firstname.lastname@kuleuven.be

Abstract

We show a compiler that allows to prove the correct execution of RAM programs using any
zero-knowledge system for circuit satisfiability. At the core of this work is an arithmetic circuit
which verifies the consistency of a list of memory access tuples in zero-knowledge.

Using such a circuit, we obtain the first constant-round and concretely efficient zero-knowledge
proof protocol for RAM programs using any stateless zero-knowledge proof system for Boolean
or arithmetic circuits. Both the communication complexity and the prover and verifier run times
asymptotically scale linearly in the size of the memory and the run time of the RAM program;
we demonstrate concrete efficiency with performance results of our C++ implementation.

We concretely instantiate our construction with an efficient MPC-in-the-Head proof system,
Limbo (ACM CCS 2021). The C++ implementation of our access protocol extends that of Limbo
and provides interactive proofs with 40 bits of statistical security with an amortized cost of
0.42ms of prover time and 2.8KB of communication per memory access, independently of the size
of the memory; with multi-threading, this cost is reduced to 0.12ms and 1.8KB respectively. This
performance of our public-coin protocol approaches that of private-coin protocol BubbleRAM
(ACM CCS 2020, 0.15ms and 1.5KB per access).

1 Introduction

A zero-knowledge (ZK) proof is a fundamental cryptographic tool which proves that a statement
is true without revealing any other information. Since their introduction by Goldwasser, Micali
and Rackoff [GMRA85], ZK proofs have had a significant impact on cryptography and have been the
object of intense research work due to their theoretical importance and varied applicability.

Many types of ZK proof systems exist, each presenting different trade-offs between several
efficiency measures. While in blockchain applications, the main focus is on succinct proofs of
small statements [GGPR13, Grol6, Set20], another line of research has focused on prover effi-
ciency [JKO13, AHIV17, KKW18, BCR*19, DIO21, dOT21], while other works have successfully
constructed ZK proof systems for very large statements with good concrete efficiency [WYKW21,
YSWW21, WYX*21, BMRS21].

Unfortunately, these works focus mostly on statements represented as circuits, either Boolean
or arithmetic, which can incur a significant overhead to prove properties of large statements that
are more naturally represented as random-access machine (RAM) programs. Many interesting
functions and applications, such as private database search or verification of program execution,

~ 3 X
Improvement

Two Shuffles Make a RAM: Improved Constant Overhead Zero

Knowledge RAM

Yibin Yang* David Heath'
July 17, 2023

Abstract

We optimize Zero Knowledge (ZK) proofs of statements expressed as RAM programs over
arithmetic values. Our arithmetic-circuit-based read /write memory uses only 4 input gates and
6 multiplication gates per memory access. This is an almost 3x total gate improvement over
prior state of the art (Delpech de Saint Guilhem et al., SCN’22).

We implemented our memory in the context of ZK proofs based on vector oblivious linear
evaluation (VOLE), and we further optimize based on techniques available in the VOLE setting.
Our experiments show that (1) our total runtime improves over that of the prior best VOLE-ZK
RAM (Franzese et al.,, CCS’21) by up to 20x and (2) on a typical hardware setup, we can
achieve ~ 600K RAM accesses per second.

We also develop improved read-only memory and set ZK data structures. These are used
internally in our read/write memory and improve over prior work.

*Georgia Institute of Technology, yyang811@gatech.edu.
"University of Illinois Urbana-Champaign, daheath@illinois.edu

Today’s Focus

mein c
i C

"One shuffle makes a ROM"”

Permutation Proof

ESet Membership Checkeré

--------------- .------------------'

Permutation Proof

ESet Membership Checkeré

--------------- .------------------'

Preliminaries: Proof of a Permutation

— —>
X

Consider vectors ,

Are X and y related by a permutation?

— —

X ~y

10

Preliminaries: Proof of a Permutation

— —>
X

Consider vectors ,

Are X and y related by a permutation?

— —

X ~y

p) =[x -x) X~y & p=gq

g) = [[x—»

Preliminaries: Proof of a Permutation

— —>
X

Consider vectors , Y

Are X and y related by a permutation?

— —

X ~y

p) =[x -x) X~y & p=gq

$ Proof: p(a) = g(a)

—_ a <[ased on the
q (X) — H (X —) i) o —2 SBZDLdLemtr?ma
l

\ P [DL78,Sch80,Zip89]

Preliminaries: Proof of a Permutation

— —

Proving X ~ y uses only 2n — 2 MUL gates

p) =[x -x) X~y & p=gq

$ Proof: p(a) = g(a)

—_ a <[ased on the
q (X) — H (X —) i) o —2 SBZDLdLemtr?ma
l

\ P [DL78,Sch80,Zip89]

Preliminaries: Proof of a Permutation

— —

Proving X ~ y uses only 2n — 2 MUL gates

) =]]x-7%)

g)= x-7)

Permutation Proof

ESet Membership Checkeré

--------------- .------------------'

ESet Membership Checkeré

--------------- .------------------'

Key

Value

x[0]

x[1]

X[2]

Read-Only Memory

| OAD(i)

Key

Value

x[0]

x[1]

X[2]

Read-Only Memory

| OAD(i)

Key Insight:
We just need to check P
does not cheat

-

{

Q

U

Key

Value

x[0]

x[1]

X[2]

Read-Only Memory

| OAD(i)

Key Insight:
We just need to check P
does not cheat

How?
Construct the “one-time”
readable entries, and create
a “reading history log”

-

{

Q

U

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

writes

reads

Make vectors of triples: (index, value, version)

13

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

reads

13

-

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

reads

13

-

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

reads

value: y0 version:

vO

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

value: y0 version:

vO

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

value: y1 version:

VA

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

reads 1,y0,v0 0,y1,v1 1,y2,v2

value: y2 version:

V2

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

writes 0,x[0],0 1,x[1],0 2 X[2],0 1,y0,v0+1 0,y1,v1+1 1,y2,v2+1

13

TEARDOWN

Read-Only Memory

Make vectors of triples: (index, value, version)

Key

Value

x[0]

X[2]

-

Q

|

TEARDOWN

13

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

reads 1,y0,v0 0,y1,v1 1,y2,v2 0,x[0],v3 1,x[1],v4

TEARDOWN

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

reads 1,y0,v0 0,y1,v1 1,y2,v2 0,x[0],v3 1,x[1],v4 2 X[2].V5

TEARDOWN

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

"~y

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

14

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

"~y

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

14

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

writes 0 x[O] 0 1 x[1] 0 2 x[2] 0 1,y0,vO+1 m 1,y2,v2+1

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

14

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

14

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

14

Read-Only Memory

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

writes 0 x[O] 0 1 x[1] 0 2 x[2] 0 1,y0,vO+1 m 1,y2,v2+1

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

16

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

writes 0 x[O] 0 1 x[1] 0 2 x[2] 0 1,y0,vO+1 m 1,y2,v2+1

reads

1,y0,v0 0,y1,v1 1,y2,v2 0,x[0],v3 1,x[1],v4 2,X[2],v5

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

16

Key Value
0 x[0]
1 x[1]
2 x[2]

Read-Only Memory

Make vectors of triples: (index, value, version)

Use 2n+2T-2 MUL gates to check reads ~ writes

Claim: if reads ~ writes, P did not cheat

16

Read-Only Memory

teardown

17

setup

Read-Only Memory

Time

17

teardown

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

setup

Read-Only Memory

Time

17

teardown

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

How?

Read-Only Memory

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

How?
Instead of “version”,
consider “timestamp”.
Then, prove the “time
difference” Is positive.

Time

setup
teardown

17

Read-Only Memory

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

How?
Instead of “version”,
consider “timestamp”.
Then, prove the “time
difference” Is positive.

Time

How?

setup
teardown

17

Read-Only Memory

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

How?
Instead of “version”,
consider “timestamp”.
Then, prove the “time
difference” Is positive.

Time How?
Hint: A ZK ROM with

1.2,....,T Indexes

setup
teardown

17

Key

Value

x[0]

x[1]

x[2]

Read-Only Memory

On an access, P
gives two Inputs:
value and version

After T accesses,
permutation check on
length n+T vectors

18

2 INPUTs, 2 MULs per
access

ESet Membership Checkeré

--------------- .------------------'

Evaluation

DO
ot

We implemented Iin the 1
VOLE-based ZK setting L .

[DIOzl, stwzl] "1 12 1:3 1:4 1T5 1;6 117 118 1;9 20

logn

Figure 12: Speedup of our RAM over [FKL"21]’s RAM.

S

~600K random T as e :
accesses per second R e e e
on a1 Gbps LAN e

11 12 13 14 15 16 17 18 19 20
logn

Figure 15: Our RAM’s speedup over [DdSGOTV22)’s RAM (we optimize [DASGOTV22]’'s RAM).

20

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Thank you! oo | | posame | | pasens
Q&A

AVAILABLE REPRODUCED

vvang811@gatech.edu

* ePrint: https://eprint.iacr.org/2023/1115
* GitHub: https:/github.com/gconeice/improved-zk-ram

mailto:yyang811@gatech.edu
https://eprint.iacr.org/2023/1115
https://github.com/gconeice/improved-zk-ram

