
Two Shuffles Make a RAM:
Improved Constant Overhead

Zero Knowledge RAM

Yibin Yang, Georgia Tech
David Heath, UIUC

Zero-Knowledge Proof [GMR85]

1

Verifier Prover

Zero-Knowledge Proof [GMR85]

1

Verifier Prover

Statement

Zero-Knowledge Proof [GMR85]

1

V P

Statement
Witness

This puzzle
has a solution

Zero-Knowledge Proof [GMR85]

1

V P

Statement
Witness

This puzzle
has a solution

Zero-Knowledge Proof [GMR85]

1

V P

Statement
Witness! This puzzle

has a solution

Zero-Knowledge Proof [GMR85]

1

!
Completeness
V always accepts valid statements

Zero-Knowledge Proof [GMR85]

2

!
Completeness
V always accepts valid statements

Soundness
If P does not have a witness, V rejects
statements with high probability

Zero-Knowledge Proof [GMR85]

2

!
Completeness
V always accepts valid statements

Soundness
If P does not have a witness, V rejects
statements with high probability

Zero Knowledge
V learns nothing except that the
statement is valid

Zero-Knowledge Proof [GMR85]

2

Generic Zero-Knowledge Proof

3

Generic Zero-Knowledge Proof

V P

×

× +

+

3

Generic Zero-Knowledge Proof

V P

×

× +

+
I know
such that

.

x

C(x) = 0

3

Problem: ZK RAM

4

LOAD

mem

i

Problem: ZK RAM

4

LOAD

mem

i

Problem: ZK RAM

mem[i]

4

LOAD

mem

i

Problem: ZK RAM

mem[i]

STORE

mem

i

x
4

LOAD

mem

i

Problem: ZK RAM

mem[i]

STORE

mem

i

x

mem[i <- x]

4

LOAD

mem

i

Problem: ZK RAM

mem[i]

STORE

mem

i

x

mem[i <- x]

ACCESS
mem

i
x mem[i]

r/w

if r/w = 0: mem
else: mem[i <- x]

4

LOAD

mem

i

Problem: ZK RAM

mem[i]

STORE

mem

i

x

mem[i <- x]

ACCESS
mem

i
x mem[i]

r/w

if r/w = 0: mem
else: mem[i <- x]

Our ZK RAM in Recent Works
ZK CPU [YHHKV, CCS ’24]
ZK ML [HCLWZYZ, USENIX Security ’24]

4

Terminology

5

Terminology

ACCESS

×

× +

+

5

Terminology
completeness
soundness
zero-knowledge

×

× +

+ACCESS

5

Terminology

×

× +

+

completeness
soundness
zero-knowledge

Over some large field
(i.e.)

𝔽
|𝔽 | = λω(1)

ACCESS

5

Terminology

×

× +

+

completeness
soundness
zero-knowledge

Over some large field
(i.e.)

𝔽
|𝔽 | = λω(1)

Nonlinear gates:
 MUL, INPUT
Linear gates: 
 ADD, SCALE

ACCESS

5

Terminology

×

× +

+

completeness
soundness
zero-knowledge

Over some large field
(i.e.)

𝔽
|𝔽 | = λω(1)

Nonlinear gates:
 MUL, INPUT
Linear gates: 
 ADD, SCALE

ACCESS

5

Terminology

×

× +

+

completeness
soundness
zero-knowledge

Over some large field
(i.e.)

𝔽
|𝔽 | = λω(1)

Nonlinear gates:
 MUL, INPUT
Linear gates: 
 ADD, SCALE

memory slots: n
accesses: T

ACCESS

5

Our Result
×

× +

+ACCESS

6

Our Result
×

× +

+ACCESS

Naïve linear scan: O(Tn)

6

Our Result
×

× +

+ACCESS

Naïve linear scan: O(Tn)

Our construction: O(T + n)

v.s.

6

Our Result
×

× +

+ACCESS

Naïve linear scan: O(Tn)

Our construction: O(T + n)
Hidden constant: 10

v.s.

6

Our Result
×

× +

+ACCESS

Naïve linear scan: O(Tn)

Our construction: O(T + n)
Hidden constant: 10

v.s.

Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

6

7

Up to
improvement

≈ 20 ×
improvement

≈ 3 ×

7

LOAD

mem

i

Today’s Focus

mem[i]Only

8

“One shuffle makes a ROM”

Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

9

Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

9

Preliminaries: Proof of a Permutation

Are and related by a permutation?⃗x ⃗y

⃗x ∼ ⃗y

Consider vectors of elements 𝔽 ⃗x , ⃗y

10

Preliminaries: Proof of a Permutation

Are and related by a permutation?⃗x ⃗y

⃗x ∼ ⃗y

Consider vectors of elements 𝔽 ⃗x , ⃗y

p(X) = ∏
i

(X − xi)

q(X) = ∏
i

(X − yi)

⃗x ∼ ⃗y ⟺ p = q

10

Preliminaries: Proof of a Permutation

Are and related by a permutation?⃗x ⃗y

⃗x ∼ ⃗y

Consider vectors of elements 𝔽 ⃗x , ⃗y

p(X) = ∏
i

(X − xi)

q(X) = ∏
i

(X − yi)

⃗x ∼ ⃗y ⟺ p = q

α $← 𝔽
Proof: p(α) = q(α)

Based on the
SZDL Lemma

[DL78,Sch80,Zip89]PV
10

Preliminaries: Proof of a Permutation

p(X) = ∏
i

(X − xi)

q(X) = ∏
i

(X − yi)

⃗x ∼ ⃗y ⟺ p = q

α $← 𝔽
Proof: p(α) = q(α)

Based on the
SZDL Lemma

[DL78,Sch80,Zip89]

Proving uses only MUL gates⃗x ∼ ⃗y 2n − 2

PV
10

Proving uses only MUL gates⃗x ∼ ⃗y 2n − 2

Preliminaries: Proof of a Permutation

p(X) = ∏
i

(X − ⃗x i)

q(X) = ∏
i

(X − ⃗y i)
⃗x ∼ ⃗y ⟺ p = q

Generalizes to vectors of tuples [DdSGOTV22]

10

Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

11

Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

11

Read-Only Memory

LOAD(i)
Key Value

0 x[0]

1 x[1]

2 x[2]

12

Read-Only Memory

P

I know x[i]

Key insight:
We just need to check P

does not cheat

LOAD(i)
Key Value

0 x[0]

1 x[1]

2 x[2]

12

Read-Only Memory

P

I know x[i]

Key insight:
We just need to check P

does not cheat

LOAD(i)
Key Value

0 x[0]

1 x[1]

2 x[2]
How?

Construct the “one-time”
readable entries, and create

a “reading history log”
12

Read-Only Memory

Make vectors of triples: (index, value, version)

SETUP

reads

writes

P

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

Make vectors of triples: (index, value, version)

SETUP

reads

writes 0,x[0],0 1,x[1],0 2,x[2],0

P

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

Make vectors of triples: (index, value, version)

LOAD(1)

reads

writes 0,x[0],0 1,x[1],0 2,x[2],0

P

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

Make vectors of triples: (index, value, version)

LOAD(1)P

value: y0 version:
v0

reads

writes 0,x[0],0 1,x[1],0 2,x[2],0

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

Make vectors of triples: (index, value, version)

LOAD(1)P

value: y0 version:
v0

reads

writes 0,x[0],0 1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

LOAD(0)P

value: y1 version:
v1

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

LOAD(1)P

value: y2 version:
v2

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

TEARDOWNP

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

Key Value

0 x[0]

1 x[1]

2 x[2]

13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

P

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

version: v3

0,x[0],v3

Key Value

0 x[0]

1 x[1]

2 x[2]

TEARDOWN
13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

P

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

version: v4

0,x[0],v3 1,x[1],v4

Key Value

0 x[0]

1 x[1]

2 x[2]

TEARDOWN
13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

P

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

version: v5

0,x[0],v3 1,x[1],v4 2,x[2],v5

Key Value

0 x[0]

1 x[1]

2 x[2]

TEARDOWN
13

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Use 2n+2T-2 MUL gates to check reads ~ writes

~

Key Value

0 x[0]

1 x[1]

2 x[2]

14

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Use 2n+2T-2 MUL gates to check reads ~ writes

~

Key Value

0 x[0]

1 x[1]

2 x[2]

14

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Key Value

0 x[0]

1 x[1]

2 x[2]
Use 2n+2T-2 MUL gates to check reads ~ writes

14

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Key Value

0 x[0]

1 x[1]

2 x[2]
Use 2n+2T-2 MUL gates to check reads ~ writes

14

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,x[1],v0

1,x[1],v0+1

0,y1,v1

0,y1,v1+1

1,x[1],v2

1,x[1],v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Key Value

0 x[0]

1 x[1]

2 x[2]
Use 2n+2T-2 MUL gates to check reads ~ writes

14

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Read-Only Memory

15

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Key Value

0 x[0]

1 x[1]

2 x[2]
Use 2n+2T-2 MUL gates to check reads ~ writes

16

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,y0,v0

1,y0,v0+1

0,y1,v1

0,y1,v1+1

1,y2,v2

1,y2,v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Key Value

0 x[0]

1 x[1]

2 x[2]
Use 2n+2T-2 MUL gates to check reads ~ writes

16

Read-Only Memory

reads

writes 0,x[0],0

Make vectors of triples: (index, value, version)

1,x[1],0 2,x[2],0

1,x[1],v0

1,x[1],v0+1

0,y1,v1

0,y1,v1+1

1,x[1],v2

1,x[1],v2+1

0,x[0],v3 1,x[1],v4 2,x[2],v5

Claim: if reads ~ writes, P did not cheat

Key Value

0 x[0]

1 x[1]

2 x[2]
Use 2n+2T-2 MUL gates to check reads ~ writes

16

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Read-Only Memory

17

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

Read-Only Memory

17

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

Read-Only Memory

How?

17

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

Read-Only Memory

How?
Instead of “version”,

consider “timestamp”.

Then, prove the “time
difference” is positive.

17

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

Read-Only Memory

How?

How?
Instead of “version”,

consider “timestamp”.

Then, prove the “time
difference” is positive.

17

Time

Key

0

1

2 v0

v0

v0

v1

v1

v2
se

tu
p

te
ar

do
w

n

Difference between
ROM and RAM:

RAM must prevent
P from reading
from the future

Read-Only Memory

How?
Hint: A ZK ROM with

1,2,…,T indexes

How?
Instead of “version”,

consider “timestamp”.

Then, prove the “time
difference” is positive.

17

Read-Only Memory

On an access, P
gives two inputs:
value and version

After T accesses,
permutation check on

length n+T vectors

2 INPUTs, 2 MULs per
access

Key Value

0 x[0]

1 x[1]

2 x[2]

18

Read/Write Memory

Permutation Proof

Read Only Memory

Set Membership Checker

19

We implemented in the
VOLE-based ZK setting

[DIO21, YSWW21]

~600K random
accesses per second

on a 1 Gbps LAN

Evaluation

20

yyang811@gatech.edu

Thank you!

Q&A

• ePrint: https://eprint.iacr.org/2023/1115
• GitHub: https://github.com/gconeice/improved-zk-ram

mailto:yyang811@gatech.edu
https://eprint.iacr.org/2023/1115
https://github.com/gconeice/improved-zk-ram

