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Transport Layer Attacks

TCP hijacking DNS poisoning
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An illustrative TCP SEQ Inference Attack
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Threat Models

Prior works consider two threat models:

» Off-path attackers (cannot modify/eavesdrop victim connections)
* Aided off-path attackers (w/ control of an unprivileged process)

Victim client Victim server

Victim connection

Attacker




Threat Models

Prior works consider two threat models:

» Off-path attackers (cannot modify/eavesdrop victim connections)
» Aided off-path attackers (w/ control of an unprivileged process)
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Root Cause

static void tcp_send_challenge_ack(struct sock xsk)

{
static unsigned int ACK_COUNT;
strict tcp_sock xtp = tcp_sk(sk);

if (ACK_COUNT > 0@
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
tcp_send_ack(sk);

Root cause of the side channel is the secret-dependent branch.




Limitation #1: Automation and Scalability

Most side channels were manually investigated:

 TCP [Qian 2012, Cao 2016, Feng 2020, Feng 2022] ...
« UDP [Alharbi 2019, Man 2020, Man 2021] ...




Limitation #1: Automation and Scalability

Most side channels were manually investigated:

 TCP [Qian 2012, Cao 2016, Feng 2020, Feng 2022] ...
« UDP [Alharbi 2019, Man 2020, Man 2021] ...

While there have been systematic work, they run into scalability issues and
can only cover a limited portion of the code base:

* Model checking [Ensafi 2010, Cao 2019]: Very costly to build an abstract
model; limited program states and interactions
* Fuzzing [Zou 2021]: Poor code coverage




Our Solution: A graph-based approach

In our work, we model detection of i

side-channel vulnerabilities as a graph Q /Q
search problem. )

BR,2: (tcp_flag_word(th)... . BR,14: ltcp_sequence...
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Time CompIeXity: O( |V| ) p BR,16: lth->rst BR,24: th -> rst

5T 8N

BR,17: th->syn BR,25: TCP_SKB_CB...

; tcp_send_challenge
_ack(sk, skb)




Limitation #2: “Quantifying” side channels
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Our Solution: Quantifying and Ranking

Side channel 1

- tep.c: L1823
Side channel 2

- udp.c: L505
Side channel 3

- icmp.c: L977

Branch #1

- score: 1.00
Branch #2

- score: 0.96
Branch #3

- score: 0.85
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Static Taint Analysis: Sensitive Branches

static void tcp_send_challenge_ack(struct sock xsk)

{
static unsigned int ACK_COUNT; <—— Tainted by source
strict tcp_sock xtp = tcp_sk(sk);

if (ACK_COUNT > 0) {
. / NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
Sensitive tcp_send_ack(sk);‘wg\\

Branch Sink / Observable outputs

(secret- }
dependent)




Tainted Control-Flow-Graph (TCFG)

red nodes: sensitive branches

|
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¥

tcp_validate

If a sensitive branch can reach two

different observable outputs, it e Bme st Bm -
suggests a potential side channel | / \
(critical branch).

BR, 17 th->syn BR,25: TCP _SKB_CB...

syn_
challenge tep_ S(::ds:t;;pack dlscar 4 tep_ saecr:::sfh:l::;nge

blue nodes: observable outputs



Why “Quantification”?

Q: Are both critical branches (A and D) equally
severe?

- Intuitively, A has no control on the outcomes




Tainted CFG - Quantifying Side Channels

Idea of measuring leakage: entropy difference

Information entropy measures uncertainty, thus
providing insight of how much information may
be leaked at this point.

Definition 2 (Entropy of node). Let TCFG = (V,E,T,S) be
an acyclic tainted CFG. For a node v € V, let Hs(v) be the
entropy of reaching the sink set S, defined as:

0, veS
—YsesP(v,s)logy P(v,s) v¢S

where P(v,s) is the probability that node v reaches node s.




Tainted CFG - Quantifying Side Channels

Entropy difference (A) further measures how much a
node contributes to the leakage.

In this example, D adds 1 entropy to the system,

while A adds O (since either B or C already has 1
entropy), which matches the intuition that D is more
critical.

Definition 3 (Leakage of node). Let tCFG = (V,E,T,S) be
an acyclic tainted CFG. For a node v €V, let succ(v) denote
the set of the successors of vin tTCFG. Let L(v) be the leakage
of v defined as: L(v) = MaX;egcc(v) H(v) — H(i).




ldentify All Side Channels

We have two reported branches:

« #1:B, A=1
o #2:A, A=0.189

If we fix B first, will A still remain a side
channel?




Real-world Mitigations

now = jiffies / HZ;
if (now != challenge_timestamp) {
u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;

challenge_timestamp = now;
WRITE_ONCE(challenge_count, half +
prandom_u32_max(sysctl_tcp_challenge_ack_limit));

b

count = READ_ONCE(challenge_count);

if (count > @) {
WRITE_ONCE(challenge_count, count - 1);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
tcp_send_ack(sk);

}

A mitigation in Linux v4: the ack limit is randomized.




Rank-and-Replace Algorithm
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Evaluation

Our tool is evaluted on several different TCP/UDP IPv4 implementations:
Linux 3.12 and 4.8
FreeBSD 13.2
OpenBSD 7.4

Open-source implementations:
e Picotcp (1.1k stars)
e Microps (1k stars)




Evaluation - Reduction

Evaluation results show that our tool significantly reduces number of

candidate branches:

# tainted
branches

# critical
branches

# reported
branches

Linux/TCP (Advy)

1651

185

Linux/TCP (Adv,)

1651

528

Linux/UDP (Advy)

572

59

Linux/UDP (Adv,)

572

354

FreeBSD/TCP (Advy)

843

199

FreeBSD/UDP (Adv,)

310

28

OpenBSD/TCP (Advy)

131

173

OpenBSD/UDP (Adv,)

302

27

microps

35

picotcp

505

15




Evaluation - Efficacy & Precision

 We uncovered 42 side channels, 30 of which are new.

Compared to several prior works, our tool can detect all known side
channels under the same threat model [Cao 2016, Cao 2019, Alharbi
2019, Man 2020, Man 2021, Qian 2012, Qian 2012]

Only 5 out of 42 reported side channels are verified to be false positives.




Summary

The contributions of this work are:

e First to model the detection of TCP/UDP side-channel vulnerabilities as a
graph-search problem

Design and implement the automated tool for detecting and quantifying
side channels

Evaluated the tool on several benchmarks, uncovering 42 side channels

Our code is open-sourced at: https://github.com/athena-paper/athena
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