Athena: Analyzing and
Quantifying Side Channels of
Transport Layer Protocols

Feivang Yu?!, Quan Zhou?, Syed Rafiul Hussain?, Danfeng Zhang®

Duke University, 2Penn State University
Aug 15, 2024

Transport Layers

Application
Presentation
Session

:> Transport

Network

[(underlying)

Data Link

Physical

Transport Layer Attacks

TCP hijacking DNS poisoning

Alice Client DNS server Real website

IP address: aaa.bbb.ccc.ddd Telnet server 1 Request to o0 =
real website m
= Telnet session established - ;)

N\ 3. Resolve to
fake website

2. Inject fake

S Hi Alice, DNS entry :
Sure! ‘
| will create a reverse shell J y . D
0o XXX.YYY.ZZZ.WWW. _/
Attacker ﬁ
IP address: xxx.yyy.zzz.www -

Connection (requires seq Access (requires
take-over number) manipulation port number)

An illustrative TCP SEQ Inference Attack

A TCP In-window Out-of-window

side-channel o SEQ
attack [Cao 2016]: Secvai e ' Client2 | | Server2

-

e

ACK count =100

With successful .
inference,
attackers can
hijack the
session.

An illustrative TCP SEQ Inference Attack

A TCP

In-window
SEQ

Out-of-window

SEQ

side-channel
attack [Cao 2016]:

Server 1 Client 1

Attacker

Client 2

Server 2

ACK count =100

With successful
inference,
attackers can
hijack the
session.

ACK count =99

e

i

Challenge ACK?

——

An illustrative TCP SEQ Inference Attack

In-window Out-of-window
ATCP SEQ SEQ

side-channel
attack [Cao 2016]:

Client 1 Attacker Client 2

ACK count =100

With successful
inference,
attackers can
hijack the
session.

ACK count =99

ACK count=0

An illustrative TCP SEQ Inference Attack

In-window Out-of-window
ATCP SEQ SEQ

side-channel
attack [Cao 2016]:

Client 1 Attacker Client 2

ACK count = 100 g - g ACK count = 100

(Silently

With successful ~_ : . drops)

. ACK count =99
inference,

attackers can
hijack the
session.

ACK count=0

An illustrative TCP SEQ Inference Attack

In-window Out-of-window
ATCP SEQ SEQ

side-channel
attack [Cao 2016]:

Client 1 Attacker Client 2

ACK count = 100 Ll ACK count = 100

(Silently

With successful
inference,
attackers can
hijack the
session.

ACK count =99

ACK count=0 \ : : 5 S ACK count=0
99 50'\:/100 ACK

An illustrative TCP SEQ Inference Attack

In-wind Out-of-wind
The global S aEn
counter is also
stored as a file

Client 1 Attacker Client 2

(prOCfS). ACK count = 100 ACK count =100

(Silently

.. ACK count =99
An unprivileged

process can

access it even
more easily... o g

[Qla n 20 12] IOt \99 SAC z 100 EACK/" ACK count=0
E .\‘E/ '

Threat Models

Prior works consider two threat models:

» Off-path attackers (cannot modify/eavesdrop victim connections)
* Aided off-path attackers (w/ control of an unprivileged process)

Victim client Victim server

Victim connection

Attacker

Threat Models

Prior works consider two threat models:

» Off-path attackers (cannot modify/eavesdrop victim connections)
» Aided off-path attackers (w/ control of an unprivileged process)

Victim client Victim server
unprivileged process unprivileged process

—_—

Attacker

Root Cause

static void tcp_send_challenge_ack(struct sock xsk)

{
static unsigned int ACK_COUNT;
strict tcp_sock xtp = tcp_sk(sk);

if (ACK_COUNT > 0@
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
tcp_send_ack(sk);

Root cause of the side channel is the secret-dependent branch.

Limitation #1: Automation and Scalability

Most side channels were manually investigated:

 TCP [Qian 2012, Cao 2016, Feng 2020, Feng 2022] ...
« UDP [Alharbi 2019, Man 2020, Man 2021] ...

Limitation #1: Automation and Scalability

Most side channels were manually investigated:

 TCP [Qian 2012, Cao 2016, Feng 2020, Feng 2022] ...
« UDP [Alharbi 2019, Man 2020, Man 2021] ...

While there have been systematic work, they run into scalability issues and
can only cover a limited portion of the code base:

* Model checking [Ensafi 2010, Cao 2019]: Very costly to build an abstract
model; limited program states and interactions
* Fuzzing [Zou 2021]: Poor code coverage

Our Solution: A graph-based approach

In our work, we model detection of i

side-channel vulnerabilities as a graph Q /Q
search problem.)

BR,2: (tcp_flag_word(th)... . BR,14: ltcp_sequence...

g tcp_validate
_incoming(...)

Time CompIeXity: O(|V|) p BR,16: lth->rst BR,24: th -> rst

5T 8N

BR,17: th->syn BR,25: TCP_SKB_CB...

; tcp_send_challenge
_ack(sk, skb)

Limitation #2: “Quantifying” side channels

Another limitation of _
prior side-channel Side iha""fgz
. | .. - tep.c:
itudy I? !ack. Of,, ¥ . Side channel 2
guantification”:

. - udp.c: L505
Measure of severity. Side channel 3

- icmp.c: L977

Side channel 10248

- some_random_
file.c: 1114514

Our Solution: Quantifying and Ranking

Side channel 1

- tep.c: L1823
Side channel 2

- udp.c: L505
Side channel 3

- icmp.c: L977

Branch #1

- score: 1.00
Branch #2

- score: 0.96
Branch #3

- score: 0.85

Design

=

l

Static Taint
Analysis

Design

=

l

Static Taint
Analysis

Static Taint
Analysis

Leakage
Analyzer

Br #1:
score 1.00
Br#2:
score 0.95

Design

.C

l

Static Taint
Analysis

Leakage
Analyzer

Leakage
Mitigator

Br #1:
score 1.00
Br#2:
scorj‘ 0.95

Leakage
Analyzer

Br #2:
score 1.00
Br#3:
score 0.98

Design

AN
PR

.C .
| Side
l - channel

L Br #1: report
Static Taint Clesm O Q. Leakage score 1.00 P

Analysis O = | M Analyzer Br#2:
& ED—-E SCOrT 0.95 I

Leakage
Mitigator Rule-based

Br #2: Classifier
Leakage score 1.00

D | Analyzer Br#3:
& CE)- = score 0.98

No more?

Terminate

Static Taint Analysis: Sensitive Branches

static void tcp_send_challenge_ack(struct sock xsk)

{
static unsigned int ACK_COUNT; <—— Tainted by source
strict tcp_sock xtp = tcp_sk(sk);

if (ACK_COUNT > 0) {
. / NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
Sensitive tcp_send_ack(sk);‘wg\\

Branch Sink / Observable outputs

(secret- }
dependent)

Tainted Control-Flow-Graph (TCFG)

red nodes: sensitive branches

|
The Tainted CFG is a modified CFG :
with marked sensitive branches. Q /Q
BR,2: (tcp_flag_word(th)... - BR 14: ltep_ sequence

¥

tcp_validate

If a sensitive branch can reach two

different observable outputs, it e Bme st Bm -
suggests a potential side channel | / \
(critical branch).

BR, 17 th->syn BR,25: TCP _SKB_CB...

syn_
challenge tep_ S(::ds:t;;pack dlscar 4 tep_ saecr:::sfh:l::;nge

blue nodes: observable outputs

Why “Quantification”?

Q: Are both critical branches (A and D) equally
severe?

- Intuitively, A has no control on the outcomes

Tainted CFG - Quantifying Side Channels

Idea of measuring leakage: entropy difference

Information entropy measures uncertainty, thus
providing insight of how much information may
be leaked at this point.

Definition 2 (Entropy of node). Let TCFG = (V,E,T,S) be
an acyclic tainted CFG. For a node v € V, let Hs(v) be the
entropy of reaching the sink set S, defined as:

0, veS
—YsesP(v,s)logy P(v,s) v¢S

where P(v,s) is the probability that node v reaches node s.

Tainted CFG - Quantifying Side Channels

Entropy difference (A) further measures how much a
node contributes to the leakage.

In this example, D adds 1 entropy to the system,

while A adds O (since either B or C already has 1
entropy), which matches the intuition that D is more
critical.

Definition 3 (Leakage of node). Let tCFG = (V,E,T,S) be
an acyclic tainted CFG. For a node v €V, let succ(v) denote
the set of the successors of vin tTCFG. Let L(v) be the leakage
of v defined as: L(v) = MaX;egcc(v) H(v) — H(i).

ldentify All Side Channels

We have two reported branches:

« #1:B, A=1
o #2:A, A=0.189

If we fix B first, will A still remain a side
channel?

Real-world Mitigations

now = jiffies / HZ;
if (now != challenge_timestamp) {
u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;

challenge_timestamp = now;
WRITE_ONCE(challenge_count, half +
prandom_u32_max(sysctl_tcp_challenge_ack_limit));

b

count = READ_ONCE(challenge_count);

if (count > @) {
WRITE_ONCE(challenge_count, count - 1);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
tcp_send_ack(sk);

}

A mitigation in Linux v4: the ack limit is randomized.

Rank-and-Replace Algorithm

We designed a replace | |

algorithm and a special (*) i
node to mimic the Q (0.25, 0.75, 0) Q ©,1,0)

) (0,1, 0) :
: tep_send_
|| tep_reset(sk) challenge_ack
[(sk)

0,1, 0) (U0
top_resetisk) cht;fé:ggfgck
(sk)
Check our paper for more v

details. — ;@ 0, 0, 1)

++challenge_count <= 1 ++challenge_count <=
sysctl_tcp_challenge_ack_limit | sysctl_tcp_challenge_ack_limit

v

tcp_send_ack ; tcp_send_ack
(sK) | (sK)

|
I
I
|
|
I
|
. . .]\
l I ||t|gat|0n . TCP_SKB_CB(skb)->seq == tp->rcv_nxt I TCP_SKB_CB(skb)->seq == tp->rcv_nxt
|
|
|
I
|
|
|
1

Side Channel Report

Static Taint
Analysis

Leakage
Analyzer

Leakage
Mitigator

Br #1:
score 1.00
Br#2:
scorj‘ 0.95

Leakage
Analyzer

No more?

Terminate

Br #3:
score 0.96
Br#4:

ore 0.92

N

Side
channel
report

|

Rule-based
Classifier

Evaluation

Our tool is evaluted on several different TCP/UDP IPv4 implementations:
Linux 3.12 and 4.8
FreeBSD 13.2
OpenBSD 7.4

Open-source implementations:
e Picotcp (1.1k stars)
e Microps (1k stars)

Evaluation - Reduction

Evaluation results show that our tool significantly reduces number of

candidate branches:

tainted
branches

critical
branches

reported
branches

Linux/TCP (Advy)

1651

185

Linux/TCP (Adv,)

1651

528

Linux/UDP (Advy)

572

59

Linux/UDP (Adv,)

572

354

FreeBSD/TCP (Advy)

843

199

FreeBSD/UDP (Adv,)

310

28

OpenBSD/TCP (Advy)

131

173

OpenBSD/UDP (Adv,)

302

27

microps

35

picotcp

505

15

Evaluation - Efficacy & Precision

 We uncovered 42 side channels, 30 of which are new.

Compared to several prior works, our tool can detect all known side
channels under the same threat model [Cao 2016, Cao 2019, Alharbi
2019, Man 2020, Man 2021, Qian 2012, Qian 2012]

Only 5 out of 42 reported side channels are verified to be false positives.

Summary

The contributions of this work are:

e First to model the detection of TCP/UDP side-channel vulnerabilities as a
graph-search problem

Design and implement the automated tool for detecting and quantifying
side channels

Evaluated the tool on several benchmarks, uncovering 42 side channels

Our code is open-sourced at: https://github.com/athena-paper/athena

Thank you!

