
TAPFixer: Automatic Detection and Repair of
Home Automation Vulnerabilities

based on Negated-property Reasoning
Yinbo Yu1,2, Yuanqi Xu1, Kepu Huang1, Jiajia Liu1

1National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application
Technology, School of Cybersecurity, Northwestern Polytechnical University, China

2Research & Development Institute of Northwestern Polytechnical University in Shenzhen, China

AUGUST 14–16, 2024
PHILADELPHIA, PA, USA

Home Automation (HA)

Smart CleaningSmart WateringSecurity Monitoring

HA in daily life

HA platforms

Lighting Control

Samsung
SmartThings

Apple
Homekit

Home Assistant
IFTTT

openHABMI HOME

Trigger-Action Programming (TAP)

Paradigm of a TAP rule
 IF a [Trigger] occurs WHILE a [Condition] satisfies , THEN perform an [Action].

Example

Keep the room at the proper temperature:
IF [motion sensor detects user returning home] , THEN [turn on heater].
 [Trigger] [Action]

Power off before bedtime:
IF [11 p.m.] WHILE [motion sensor detects no one moving] , THEN [turn off all power].
 [Trigger] [Condition] [Action]

Interaction Vulnerabilities

TAP rule1 : IF [motion sensor detects user returning home] , THEN [turn on heater].
 [Trigger] [Action]

TAP rule2 : IF [11 p.m.] WHILE [motion sensor detects no one moving] , THEN [turn off all power].
 [Trigger] [Condition] [Action]

Secure Case Defective Case
Interaction

Pattern Rules run independently Rules interact with each other

Execution
Sequence

Rule2 triggers later than rule1 since
the user is usually home before 11 p.m.

Rule2 triggers later than rule1 since
the user is usually home before 11 p.m.

Vulnerability Nonexistent The heater may still be running while
sleeping, which may cause a fire hazard.

Defective Case

Rules interact with each other

Rule2 triggers earlier than rule1 since
the user is home after 11 p.m.

The heater may still be running while
sleeping, which may cause a fire hazard.

Motivation: Previous Approaches

Limitation:
● Existing works neglect above key logical-physical features

● Fail to detect vulnerabilities with such features

Vulnerability Detection:
Model Checking-based / Symbolic Execution-based

Logical-physical Space:
● Determine correctness of rule interactions

● Latency ��, ��, ��:
��: delay defined in rules for specifying the device execution time
��: delay on a tardy attribute change to a certain value
��: platform delay

● Physical interaction ����,����,����:
����: implicit physical effect ����: joint physical effect
����: nondeterminacy

Motivation: Previous Approaches

Limitation of Dynamic Approaches:
● Unable to fix flaws in rule semantics (root cause of vulnerabilities)

● Introduce additional runtime overhead

Vulnerability Repair:
Dynamic Access Control-based / Static Semantic Modification-based

Scenarios with Dynamic Factors

vulnerability
with implicit interactions

vulnerability with latency

Limitation of Static Approaches:
● Not considering dynamic factors in physical space
 and fail to repair related expanded vulnerabilities.

TAPFixer

To our best knowledge, TAPFixer is the first work that
can essentially detect and fix rule interaction vulnerabilities both in the logical and physical space.

Addressing Challenge 1: Comprehensive modeling logical-physical features

Physical model-based HA system modeling

��: modeled as a timer configured with a timeout value
��: set the physical changing threshold
��: set the updating interval threshold

1. Latency Modeling

����: create a mapping of device actions to
implicitly affected physical channels
����: modeled as the sum of the physical
effects of the device's individual operation
����: modeled as a series of arbitrary values

2. Physical Interaction Modeling

ℳ��: = {�, �, ∑}
Automata state universal set �, initial state set �:
modeled as device and environment attributes
State transfer function � ∈ ∑:
transfer conditions: modeled as trigger and condition
transfer label: modeled as action

3. Finite Automata Construction

Latency,
physical
features

Addressing Challenge 2: Detecting expanded vulnerabilities

Basic Vulnerability Pattern (V1-V3)
Expanded Vulnerability Pattern (V4-V8)

● Correctness Property: a criterion to describe what automation behavior is safe or not.

● Categorize 9 language templates of properties into 2 logical templates for property specification

Addressing Challenge 2: Detecting expanded vulnerabilities

Correctness property categorizing and ranking-based vulnerability detection

● Supply more properties for different scenarios (e.g., properties with permitted latencies P.34),
finally conduct 53 properties for vulnerability detection.

● Define pre- and post-proposition priority ranking to resolve property violations.

Addressing Challenge 2: Detecting expanded vulnerabilities

● If the vulnerability exists, a system execution path that violates the correctness property
 (i.e., counterexample) will be returned by the model checker

P.1: close the window if it rains
P.2: open the window if CO is detected

If it rains and CO is detected
Close or open window ??

Addressing Challenge 3: Repairing expanded vulnerabilities

● Secure scenario reasoned by ¬� can fix vulnerability violated �
● Reasoned result of ¬� does not violate �, i.e., the reasoned result of ¬� constitutes the repair space
for the vulnerability violated �

Vulnerability Detection How to repair vulnerability?
Negated-property Reasoning (NPR) Algorithm

Applied
Property

Correctness Property �：
IF the user is not at home, the heater

should be turned off.

Negated-property ¬� logically opposite to �：
 IF the user is not at home, the heater should be

turned on (negated).

Verification
Process

model checking with � on model ℳ
(ℳ ⊨ �)

model checking with ¬� on model ℳ
(ℳ ⊨ ¬�)

Verification
Result

Return a violation of � in ℳ:
scenarios where no one is home but
the heater is running (fire hazard)

Return a violation of ¬� in ℳ:
scenarios where no one is home and the heater

is off (potential fix information)

Addressing Challenge 3: Repairing expanded vulnerabilities

����

�-space
¬�-space

S1S2S3

S5S4

ℳ�-space
�-space

¬�-space
S1

S2’S4’

S6’

S5’ S3’

���¬�

Repair patch

Abstraction

ℳΘ
�-space

Refinement

● The core idea of our NPR algorithm for vulnerability repair.
● Model abstraction via interpolation is used to involve a larger state space for patch searching,
so the negated counterexample CEX¬� can contain repair patches for the vulnerability CEX�.

Negated-property reasoning (NPR) algorithm

Addressing Challenge 3: Repairing expanded vulnerabilities

Negated-property reasoning (NPR) algorithm

Step1: Negated Property Generation & Spurious Indicator Identification
● Negate the latter part of the LTL template divided by "⇒" to generate the negated property
● Spurious Indicator: assess whether a patch can fix the vulnerability
● Spurious indicator is the violating state in the counterexample

Step2: Patch Reasoning

● Abstract model ℳ to ℳ�
�

● Reason patch � from abstract model ℳ�
�

● Limited repair information in the state space of model ℳ

Step3: Patch Feasibility Checking
● Patch Category
● Feasibility Checking
● Reasoning-guided Abstraction Refinement

Evaluation
Case Study of Vulnerability Detection and Repair Accuracy

● Benchmark contains expanded vulnerabilities V4-V8

● TAPFixer is more effective at identifying and repairing
 expanded vulnerabilities

Evaluation

● 1177 TAP rules from SmartThings SmartApp and IFTTT applets and 110 test groups
● Scenario-based Vulnerability Repair：
 repair 4544 of 5244 found vulnerabilities Repair Success Rate (RSR): 86.65%
● Priority-based Violation Repair：
 repair 4460 of 5335 found vulnerabilities Repair Success Rate (RSR): 83.60%

Market App Study of Vulnerability Repair

Evaluation

● Comparison with the SOTA approach
● Modeling Success Rate (MSR): assess the integrity of rule modeling
● Repair Failure Rate (RFR)

RFR-MF: RFR caused by modeling failures
RFR-LIMIT: RFR caused by modeling failures repair algorithm limitations

Market App Study of Vulnerability Repair

Evaluation

User Survey on the Quality of Vulnerability Detection and Repair

● RSR: 94.5%
● Satisfaction Rate of the Detection and Repair Quality：99%

Evaluation

Performance

For 110 test groups in market apps：

● Average time 6.62 h

● Average time to reason a patch 3.51s

For case study:
● 21-rule benchmarks (Group 1-5)
 Average time 2.69 min

● Initialization Scenarios (N/A 1-2)
 Average time 228 ms

Conclusion

● We propse the physical model-based HA system modeling that can model
 rules with more practical latency and physical features.

● We propose the correctness property categorizing and ranking-based vulnerability detection
 that can identify more expanded interaction vulnerabilities.

● We propose a novel negated-property reasoning algorithm (NPR) that can accurately
 generate valid patches for eliminating vulnerabilities both in the logical and physical space.

● We implement TAPFixer, the first framework that can essentially detect and repair
 rule interaction vulnerabilities both in the logical and physical space.

● TAPFixer achieves very good results from aspects of accuracy analysis,
 repair capabilities of market apps, real user study, and execution performance.

Thanks

Q&A

