33" U5ENIX

SECURITY SYMPOSIUM

TAPFixer: Automatic Detection and Repair of
Home Automation Vulnerabilities
based on Negated-property Reasoning

Yinbo Yul-2, Yuanqi Xu!, Kepu Huang!, Jiajia Liu!

INational Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application
Technology, School of Cybersecurity, Northwestern Polytechnical University, China

ZResearch & Development Institute of Northwestern Polytechnical University in Shenzhen, China

AUGUST 14-16, 2024
PHILADELPHIA, PA, USA

Home Automation (HA)

HA in daily life

L Fe N e
P e 2 — " VI
L - T -
Lighting Control Security Monitoring Smart Watering
HA platforms
P (FTTT /N
OO '
HomeKit IFTTT _ m—
Samsung Apple MI HOME Home Assistant openHAB

SmartThings Homekit

Trigger-Action Programming (TAP)

Paradigm of a TAP rule
IF a [Trigger] occurs WHILE a [Condition| satisfies , THEN perform an [Action].

Example
[Trigger] [Action]

Power off before bedtime:
IF [11 p.m.] WHILE [motion sensor detects no one moving| , THEN [turn off all power]
[Trigger] |Condition] [Action]

Interaction Vulnerabilities

TAP rulel : IF [motion sensor detects user returning home] , THEN [turn on heater].
[Trigger] [Action]

TAP rule2 : IF [11 p.m.] WHILE [motion sensor detects no one moving] , THEN [turn off all power].
[Trigger] [Condition] [Action]

Secure Case Defective Case

Interaction Rules run independently Rules interact with each other
Pattern
Execution Rule2 triggers later than rulel since Rule2 triggers earlier than rulel since
Sequence the user is usually home before 11 p.m. the user 1s home after 11 p.m.
Vulnerability Nonexistent The heater may still be running while

sleeping, which may cause a fire hazard.

Motivation: Previous Approaches

Vulnerability Detection:
Model Checking-based / Symbolic Execution-based

Logical-physical Space:

® Determine correctness of rule interactions

® Latency ,
: delay defined 1n rules for specifying the device execution time
: delay on a tardy attribute change to a certain value
: platform delay

® Physical interaction : : ;
: implicit physical effect : Jjoint physical effect
: nondeterminacy
Limitation:
® Existing works neglect above key logical-physical features

® Fail to detect vulnerabilities with such features

Layer Action

Control:
center Layer;
controller

Communicationi
Layer
@ zigbee !

Phy3|cal Event |

Layer

Motivation: Previous Approaches

Vulnerability Repair:

Dynamic Access Control-based / Static Semantic Modification-based

Limitation of Dynamic Approaches:
® Unable to fix flaws in rule semantics (root cause of vulnerabilities)

® Introduce additional runtime overhead

Limitation of Static Approaches:

® Not considering dynamic factors in physical space
and fail to repair related expanded vulnerabilities.

rl[CO, high]7

Scenarios with Dynamic Factors

Turn on fan
for 15min

r, [U ser pn:sentj—-

Latency

Turn on fan
for Smin

vulnerability with latenc

F; [Temp < lé“C]—

“temperature ____

Turn on
heater

vy (Temp > EU“CJ—'

E ‘Cﬁpen

window

_____temperature

Fs [Tf:mp > 24“(?]

Turn off
heater

vulnerability|

with implicit interactions

TAPFixer

To our best knowledge, TAPFixer is the first work that
can essentially detect and fix rule interaction vulnerabilities both 1n the logical and physical space.

: Vulnerability Detection Properties > Property Priority Ranking | :
. ¢ H
- . R R G WEN
COE@| oo | [Formy] w0 [fag0: = o o0 Ly MO = ¢
HA Platform oM 1 Model Info Extraction Model Construction Model Checking
CEX?
Vulnerability Repair Model refinement Is Py or P, Pcis
= v | feasible
—|¢ CEX; semantlc O 0 patch g\/[]ﬂ’ Izq)
Negated Property CEX; —{M config % g M@) |: —0 > Patch Feasibility
Generation Spurious Indicator Identification Model Abstraction Repair Patch Reasoning Checking

Model refinement P. is infeasible

Addressing Challenge 1: Comprehensive modeling logical-physical features

Physical model-based HA system modeling

1. Latency Modeling

: modeled as a timer configured with a timeout value
: set the physical changing threshold
: set the updating interval threshold

={, .2}
Automata state universal set , initial state set :
modeled as device and environment attributes
State transfer function >
transfer conditions: modeled as trigger and condition
transfer label: modeled as action

2. Physical Interaction Modeling

: create a mapping of device actions to
implicitly affected physical channels

: modeled as the sum of the physical
effects of the device's individual operation

: modeled as a series of arbitrary values

@(Presence: present) @(r2.timer: +300, Fan: on)

present
r2.timer=300
Fan.on

present
r2.timer=0
Fan.off

not_present
r2.timer=0
Fan.off

@(Presence: not_present) @(r2.timer: -300, Fan: off)

Addressing Challenge 2: Detecting expanded vulnerabilities

1
I
I
I
ri| ¢ Xepla t Ko
% t"* — % TA : I (d) V4: Tardy-channel-based
 Aimma U"" i : | Trigger Interference.
ks J g -] I :)
t o
|
. o : l; A L ¥
(a) V1: Trigger-Interference (b) V2: Condition-Interference Tt @ I a; T; L a;
Basic Pattern. Basic Pattern. ~
1 Latenc : t
I y’ () V5: Disordered Action (f) V6: Action Overriding.

T t o - IphySlcal Scheduling.
. | features |
I
rilts @ a; 7 W a; i | 4, @ o
ﬂﬂta-rdg

>x
(c) V3: Action-Interference 1%L P d : L

Basic Pattern.
(g) V7: Action Breaking. (h) V8: Tardy-channel-based

Basic Vulnerability Pattern (V1-V3) e e e e ondton erterenes:
Expanded Vulnerability Pattern (V4-V8)

~
R ——
L

Addressing Challenge 2: Detecting expanded vulnerabilities

Correctness property categorizing and ranking-based vulnerability detection
® Correctness Property: a criterion to describe what automation behavior is safe or not.

® Categorize 9 language templates of properties into 2 logical templates for property specification

Table 12: Logically equivalent correctness property types.

Summarised

property types

Property types

Natural language templates

Event-based

One-Event Unconditional

[event] should [never] hap-
pen

Event-State Conditional (al-
ways)

[event] should [always] hap-

Event-State Conditional

(never)

pen when [state ,..., state, |
[event] should [never] hap-
pen when [state ,..., statey|

State-based

One-State Unconditional (al-
ways)

[state] should [always] be ac-
tive

One-State Unconditional

(never)

[state] should [never] be ac-
tive

Addressing Challenge 2: Detecting expanded vulnerabilities

® Define pre- and post-proposition priority ranking to resolve property violations.

Table 13: Sorting descriptions of the pre-proposition priority.

Scenarios in the pre-proposition

P.1: close the window if it rains
P.2: open the window if CO 1s detected

Pre-proposition priority
of the correctness property

u ':i-'EF_I'IL}l_PrE senl >user. presc nt,

General smoke.detected = CO.detected >weatherraining >

If it rains and CO 1s detected CO,-related = humidity-related
Close or open window ??

user.not_present >heater.on = AC.on >the temperature
Temperature-related

is below /rises above a predefined value

® Supply more properties for different scenarios (e.g., properties with permitted latencies P.34),
finally conduct 53 properties for vulnerability detection.

P31 WHEN CO 1s detected, the alarm should be activated.

P.32 IF humidity is greater than a predefined value, the ventilating fan should be turned on.

P.33 IF CO; 1s greater than a predefined value, the ventilating fan should be turned on.

F.34 WHEN CO0», remains greater than a predefined value, the ventilating fan should be on for at least the permitted time.

® [f the vulnerability exists, a system execution path that violates the correctness property
(i.e., counterexample) will be returned by the model checker

Addressing Challenge 3: Repairing expanded vulnerabilities

ors . How to repair vulnerability?
Vulnerability Detection Negated-property Reasoning (NPR) Algorithm
Apolied Correctness Property Negated-property — logically opposite to
PP IF the user 1s not at home, the heater IF the user 1s not at home, the heater should be
Property
should be turned off. turned on (negated).
Verification | model checking with on model model checking with = on model
Process | () (-)
: . Return a violation of in Return a violation of = in
Verification
scenarios where no one is home but | scenarios where no one is home and the heater
Result
the heater is running (fire hazard) is off (potential fix information)

® Secure scenario reasoned by — can fix vulnerability violated
® Reasoned result of = does not violate , 1.e., the reasoned result of = constitutes the repair space

for the vulnerability violated

Addressing Challenge 3: Repairing expanded vulnerabilities

Negated-property reasoning (NPR) algorithm

- — ~
7 ammmm e - N
7 . - =< SO
4 e - ~
- ~ N \
————————— / 7/ P ~So N \
-------- * ’ // // \\ h *
- ~ / \
- ~ ~
- ~._ _Abstraction ,/ -~ .- NN
27N N % N SOy
TN -space A :
7, " . N / /) N \
/7 i . \ / 7 o “\ b b) \ \ \
Vs) N \ 1y / o ~ \ \
. \ 1 ~ v
4 \ [N
I - " 1
Vs - \
\ o -space T VY
Sl 1 | o e ., 1 L
1 I < I
, . O -space oy
’ LR / ,Il
/7 LERAY \\ // - 7 1
N ’ \ \ 1!
\\ l" / \ \\ " /
AN A 7 AR RN)l s 11
N 7 v N\ e el 7z ¢ !
\\\\/ ’z/ — LSRN \\ N /’ 7 7/
\~~ ’r’ . AN N 7 /7 7/
—————————— Repair patch *. . - S
-TTT p p \ > ~ =~ ~ - - - Ve 7 //
\ ~
NN S~ o _ -7 PR
~ - - _ //
N ~
N ~ - Ve
~ ~S o - '
.-~ g-Space .-
-
\\\\ ”/

-~ -
Il I

® The core idea of our NPR algorithm for vulnerability repair.
® Model abstraction via interpolation is used to involve a larger state space for patch searching,
so the negated counterexample CEX— can contain repair patches for the vulnerability CEX

Addressing Challenge 3: Repairing expanded vulnerabilities

Negated-property reasoning (NPR) algorithm

Stepl: Negated Property Generation & Spurious Indicator Identification
e Negate the latter part of the LTL template divided by "=" to generate the negated property

® Spurious Indicator: assess whether a patch can fix the vulnerability

e Spurious indicator is the violating state in the counterexample

Step2: Patch Reasoning

® Limited repair information in the state space of model

® Abstract model to
® Reason patch from abstract model

Step3: Patch Feasibility Checking

e Patch Category
e Feasibility Checking
® Reasoning-guided Abstraction Refinement

Evaluation

Case Study of Vulnerability Detection and Repair Accuracy

Table 2: Accuracy comparison of the vulnerability detection. We
use ¥ @ , and O to denote true positive, false positive, and false

ogatlve, Fepatyely. * ® Benchmark contains expanded vulnerabilities V4-V8
Benchmark | SOATERIA™ | SAFECHAIN | IOTCOM | TAPInspector | TAPFixer

ID-1 = = = = =

ID-2 ® O & ~ 1 e
o = 5 = = -— ® TAPFixer is more effective at identifying and repairing
1D-4 20 O = = = expanded vulnerabilities

ID-5 O & O ~ ™~

D-6 = o) = = =

ID-7 = = = = =

ID-8 & o) & & & Table 4: Repair accuracy comparison of expanded vulnerabilities.
i 2 [5(; g’ g g Benchmark | Liang et al. [35] | MenShen [18] | AutoTap [48] | TAPFixer
N-1 3

N-2 O o) ® & = Group 1 d ® ¢ v

N-3 (e O O 1 1 Group 2 ® ® ® Ef

N-6 O O o o & Group 3 ® ® ® 1

Gp-1 = o) & = & =

Gp-2 & o) & = = Grop s O O © &

Gp-3 & & = = = Group 5 O O 4 4

Gp-4 o o & & ~ N/A 1 @) O 1 4

Gp-5 O o & = i N/A 2 o) O 1 ~

Gp-6 O O & ~ 1
Gp-N4 0 o 0o = & T Correctly fixed partial vulnerable rule interactions, but did not fix the rest.
Gp-N5 0 o o v & ¥ Correctly fixed partial vulnerable rule interactions, but incorrectly fixed the rest.

* results obtained from [12.20.47]

Market App Study of Vulnerability Repair

® 1177 TAP rules from SmartThings SmartApp and IFTTT applets and 110 test groups
® Scenario-based Vulnerability Repair:

repair 4544 of 5244 found vulnerabilities Repair Success Rate (RSR): 86.65%
® Priority-based Violation Repair:

repair 4460 of 5335 found vulnerabilities Repair Success Rate (RSR): 83.60%

Table 5: Summary of detection and repair results for G1-G7 with

#0 Repair success rate (%) “N'™ Number of patches
—— ;

110 rule groups, each of which contains 15-30 TAP rules. 100 . i B 2 | P 50
Application scenarios 'FiKE_!d U'nﬁx'able Safe Generated | RSR?T E R0 f; ;‘ | ? B 2 j /\; ;_, e r 700 2
violations | violations | cases patches o /\/ . | / _/ g | | /_\ /_\ | ;’\: '(){]'ﬂﬁ
G1 (2 properties) 179 35 6 364 83.64% E 60- | 5% | B \‘/ Z /\\ , /’: E /_:: 4 08 1500 s
G2 (21 properties) 1675 277 358 2228 85.81% § :, /Ei I /\/\/ j e 7 B ;\ /\; A 14008
G3 (6 properties) 459 201 0 902 69.55% § 401 ¥ /\ /:/ Q /\;’ | | /\‘;\/ //_’\ /'\ Vs /\/\ | 300_:1_‘;
G4 (8 properties) 687 59 134 1145 92.09% | & /’\\\ ,’;\ /\; /\'/: BB ;\ _/\/ N /E ﬁ\ /\/\ 500 £
G5 (9 properties) 870 68 52 1288 | 92.75% E* 201 :’f:\ [5% 4 /\;\ | 3 /t /"\//i: | o //’\ /: /\Q -]{}OZ
G6 (3 properties) 272 58 0 491 82.42% " ’{_/ﬁ\ N g N\ /\:";2\ '_/.\ /\ A\ N :\ N /\ D ;
G7 (4 T[?mperties) 402 2 36 419 99.5{]3% %Q"“\ q@\ Q@\ \@ r"':;\ m&“\ b‘@ %d;\ b&*\ r\Q:ﬁ %\t} q@\ Q&\ \\'E?” ﬁ?‘\ n-\':P—‘:\
otal 4544 700 586 6837 86.65% O TTTNTTTSSY & FS

Market App Study of Vulnerability Repair

® Comparison with the SOTA approach
® Modeling Success Rate (MSR): assess the integrity of rule modeling
® Repair Failure Rate (RFR)

RFR-MF: RFR caused by modeling failures

RFR-LIMIT: RFR caused by modeling failures repair algorithm limitations
Table 6: Comparison between AutoTap and TAPFixer.

Evaluation target AutoTap TAPFixer
MSR} 54.23% 100%
RS@ of G1 (vl property) 20% 44%
RS@JOf G2 (14 properties) 51.43% 74.59%
RS@ of G3 (1 property) 8% 92 %
RS@\}: of G4 (4 properties) 44% 94.32%
RSﬁf of G7 (2 properties) 38% 91.49%
RFR-MF/RER-LIMIT) | 23.99%/24.57% | 0%/20.93%

Evaluation

User Survey on the Quality of Vulnerability Detection and Repair

® RSR: 94.5%
e Satisfaction Rate of the Detection and Repair Quality: 99%

Table 7: Number of identified and fixed vulnerabilities in 129 rules.

Sensors -

© Temperature @) Humidity O co, al A bk ¥ b Y6 e b
. o e lumi e Srmart Speak e co # found violations 5 6 9 23 0 4 5 3
8 g minance mart Speaker
° Y P # fixed violations 3 6 8 23 0 4 5 3
| | @ Motion @ Smoke RSR 60% | 100% | 89.9% | 100% | N/A | 100% | 100% | 100%
3 3 Actuators Recognition of

© Light Bulb @ DoorLock @ Cooker Detection and Repair Quality

© SmartFan @ Heater O Alarm |

@ Humidifier @ Electric Blanket @ AC
8 8@ Camera @ Sprinkler ®T1v

® Window @ Handwash @ Dryer
I I‘” @ Refrigerator

oo e am T unie miimeters (mm) B Strong Agreements ' Agreements ¥ Disagreements

Evaluation

Performance

10°
i For case study:
15104 ® 2 -rule benchmarks (Group 1-5)
L Average time 2.69 min
=
510
£, e Initialization Scenarios (N/A 1-2)

0 Average time 228 ms

Groupl Group2 Group3 Group4 GroupS NIAI N/A 2

Figure 7: Verification and repair time of each 21-rule benchmark
dataset and initialization scenarios.

For 110 test groups in market apps:

Table 8: Average patch generation time for market apps.

Market apps Total time Number of Avg. generation time per
(minute) | generated patches patch (second) o Average time 6.62 h
G1-G7 (110 rule groups) 364.070 6837 3.195
G8-G23 (110 rule groups) 431.261 6749 3.834

® Average time to reason a patch 3.51s

Conclusion

® We propse the physical model-based HA system modeling that can model
rules with more practical latency and physical features.

® We propose the correctness property categorizing and ranking-based vulnerability detection
that can identify more expanded interaction vulnerabilities.

® We propose a novel negated-property reasoning algorithm (NPR) that can accurately
generate valid patches for eliminating vulnerabilities both in the logical and physical space.

® We implement TAPFixer, the first framework that can essentially detect and repair
rule interaction vulnerabilities both in the logical and physical space.

® TAPFixer achieves very good results from aspects of accuracy analysis,
repair capabilities of market apps, real user study, and execution performance.

Thanks

