
ShadowBound: Efficient Heap Memory Protection 
Through Advanced Metadata Management and 

Customized Compiler Optimization

Zheng Yu, Ganxiang Yang, Xinyu Xing



Memory Corruption Errors

- C/C++ lacks heap memory safety. (out-of-bounds, use-after-free).
- 2023 CWE top-most dangerous software weaknesses.
- Exploiting these vulnerabilities can lead to data corruption and 

privilege escalation.



Temporal Memory Protection

- In the realm of temporal memory safety, several UAF defenses stand 
out for their remarkable performance. (<5%)



Spatial Memory Protection

- Redzone Based Checker (ASAN/SANRazor/ASAN–)
- High Performance Overhead (> 30%)
- Can be bypassed through non-linear out-of-bounds.

- Bounds Tracking (LowFat/ESAN/SoftBound/SGXBound)
- Hard to cooperate with SOTA uaf defense (Conflict Allocator).
- High Performance Overhead (> 15%)

- State of the arts (DeltaPointer)
- Well Performance Overhead (~10%)
- Restrict Memory Space to 4GB.



ShadowBound

- Low Performance Overhead (~6%)
- Provide Robust Spatial Security.
- Can work with various UAF defense.



Checking Position

bitcast i8* %0 to i32*

getelementptr i32, i32* %5, i64 %11

Insert Boundary Checking at Pointer Arithmetic



Checking Position

bitcast i8* %0 to i32*

getelementptr i32, i32* %5, i64 %11

Insert Boundary Checking at Pointer Arithmetic

Ensure the base pointer and result pointer belong to same object



Metadata Design

1. Heap memory size are equal to shadow memory size.
2. Each aligned 8 bytes heap memory are mapped into 8 bytes 

shadow memory. 

How we store each pointer’s boundary?



Metadata Design

Why 64 bits is enough to save two size_t variables?
1. All mainstream allocators default to 8-byte or 16-byte aligned allocations.
2. The maximum single-time allocation size is limited to 8 GB (2^33 bits).

How we store each pointer’s boundary?



Boundary Checking



Boundary Checking



Boundary Checking



Boundary Checking

pack



Boundary Checking

pack



- Runtime-Driven Checking Elimination
- Directional Boundary Checking
- Security Pattern Identification
- Merge Metadata Extraction
- Redundant Checking Elimination

Compiler Optimization



Compiler Optimization

- If each heap chunk has infinite space, out-of-bounds access becomes impossible, 
rendering all boundary checks redundant and eliminable.

- It’s impractical to allocate infinite or even very large spaces for every chunk due 
to the potential for high memory overhead.

- ShadowBound chooses an improved approach to balance time overhead and 
memory overhead. Specifically, ShadowBound reserves a fixed n bytes for every 
heap chunk, denoted as reserved space. Then, ShadowBound will try to find all 
eliminable boundary checks using the reserved space provided by the runtime.

Runtime-Driven Checking Elimination



Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base 
pointer can be confirmed to be less than n bytes at 
compile time.

- The result pointer will never be used as a base 
pointer in another boundary checking.

The pointer c + 1 is passed to another 
function, indicating that it may potentially 
be used as a base pointer for boundary 
checking



Security Evaluation

- Safeguard 19 programs against 34 exploitable out-of-bound bugs.

Real World Vulnerabilities



Performance Evaluation

- On SPEC CPU 2017, the geomean time overhead of each system is 5.72%, 

6.60%, 9.95%, 16.20%, 62.03%, 79.85% and 138.76%.

SPEC CPU 2017



Performance Evaluation Real World Application

- We assessed using Nginx, Chakra, and Chromium. It introduces negligible 
overhead to the tested real-world programs.



Ablation Study

- The ablation study is used to to understand the performance of each compiler 
optimization.



Conclusion

- Efficient Protection: ShadowBound uses a novel metadata 
design to quickly fetch pointer boundaries, ensuring 
compatibility with various Use-After-Free defenses and 
providing minimal overhead.

- Optimized Performance: ShadowBound implements custom 
optimization techniques for boundary checking, significantly 
reducing time overhead.

- Proven Effectiveness: Evaluations show ShadowBound 
consistently provides robust memory protection with minimal 
overhead in benchmarks and real-world applications.



Thank You

● Zheng Yu
● zheng.yu@northwestern.edu
● Twitter: @dataisland99
● Seeking intern, visiting and collaboration 

opportunities.

mailto:zheng.yu@northwestern.edu

	Slide 1: ShadowBound: Efficient Heap Memory Protection Through Advanced Metadata Management and Customized Compiler Optimization
	Slide 2: Memory Corruption Errors
	Slide 3: Temporal Memory Protection
	Slide 4: Spatial Memory Protection 
	Slide 5: ShadowBound
	Slide 6: Checking Position
	Slide 7: Checking Position
	Slide 8: Metadata Design
	Slide 9: Metadata Design
	Slide 10: Boundary Checking
	Slide 11: Boundary Checking
	Slide 12: Boundary Checking
	Slide 13: Boundary Checking
	Slide 14: Boundary Checking
	Slide 15: Compiler Optimization
	Slide 16: Compiler Optimization
	Slide 17: Compiler Optimization
	Slide 18: Security Evaluation
	Slide 19: Performance Evaluation
	Slide 20: Performance Evaluation
	Slide 21: Ablation Study
	Slide 22: Conclusion
	Slide 23: Thank You

