ARTIFACT ARTIFACT ARTIFACT

f usenix EVALUATED | | EVALUATED | | EVALUATED

usenix usenix susenix
’ COMPUTING SYSTEMS "y o p RS p BEA

ASSOCIATION

AVAILABLE REPRODUCED

MD-ML: Super Fast Privacy-Preserving Machine Learning for
Malicious Security with a Dishonest Majority

Boshi Yuan Shixuan Yang Yongxiang Zhang Ning Ding Dawu Gu Shi-Feng Sun
Shanghai Jiao Tong University

USENIX Security Symposium 2024

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 1/29

© Introduction

Boshi Yuan et al. (SJTU)

Introduction — Multi-party Computation (MPC)

S 4

T Yy
The Goal
[y, z,w) =7 @ The inputs z, ¥, z, and w are private.
@ The function f is public.
2 w

& 2

Boshi Yuan et al. (SJTU) MD-ML

Introduction — Multi-party Computation (MPC)

&

/ Truste% g Truste%\
e 2 & 7

Boshi Yuan et al. (SJTU)

Introduction — Multi-party Computation (MPC)

a

~

MPC protocol
computing f

@

A~

)

Boshi Yuan et al. (SJTU)

/

MPC
@ MPC is a cryptographic protocol
@ MPC ensures privacy and correctness

@ When f is a machine learning model —
Privacy-Preserving Machine Learning (PPML)

MD-ML USENIX Security Symposium 2024

5/29

Security Model in MPC

Adversary types:

@ Semi-honest (passive)

° ‘ Malicious (active)‘

The number of corrupted parties ¢
(let n be the total number of parties):
@ Honest majority (¢t < n/2)

° ‘ Dishonest majority (¢ < n) ‘

This work: Maliciously secure Dishonest majority PPML (MD-ML)

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 6/29

The Structure of PPML Protocols

PPML protocols consist of two parts:

An underlying MPC protocol for basic arithmetic circuits (4, x)
Using existing protocols: SPDZ, SPDZyx, Rep3, etc.

Protocols for ML-specific operations
Truncation

Comparison Make Improvements!

Vector dot product

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 7/29

The State of the Art in PPML

In malicious security with dishonest majority model.

Damgérd et al. (SP 2019)1t!, we refer to as “SPDZ,x+".
@ They use SPDZs as the underlying MPC protocol.
@ The first PPML protocol in this model.

Dalskov et al. (PETS 2020)?

@ Quantized Neural Networks (QNN) evaluation (out of our scope).

@ The underlying protocol is the same as SPDZyx+.

We mainly compare with SPDZqx+.

[1] Ivan Damgérd et al. “New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine
Learning”. In: 2019 IEEE Symposium on Security and Privacy (SP). 2019, pp. 1102-1120.
[2] Anders Dalskov, Daniel Escudero, and Marcel Keller. “Secure Evaluation of Quantized Neural Networks”. In:
Proceedings on Privacy Enhancing Technologies Symposium 2020.4 (2020), pp. 355-375.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 8/29

Our Contributions

Efficiency T Online communication |

Techiniques
o Circuit-dependent preprocessing with SPDZqx

@ New truncation, comparison, and vector dot product protocols

In terms of online communication
@ Truncation + Multiplication = Multiplication (Truncation is free)

@ Vector dot product = 1 element/party (regardless of vector length)

Implementation, benchmarks, and open-source v/

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 9/29

© Preliminaries

Boshi Yuan et al. (SJTU)

SPDZ,. Protocol?!

SPDZyk secret-sharing [z]: additive, with authentication.
Addition
[z] + [y] = [x + y] (computed locally).

Multiplication
Preprocessing: a multiplication triple ([al, [b], [c]).
Online:
@ Locally compute [0,] = [a] — [z], [0,] = [b] — [y]
e Open 6, dy.

o Locally compute [2] = [c] + 6, - [b] + 0y - [f] + e~ f.

v

[3] Ronald Cramer et al. "SPDZyy: Efficient MPC mod 2F for Dishonest Majority”. In: Advances in Cryptology

— CRYPTO 2018. Ed. by Hovav Shacham and Alexandra Boldyreva. Cham: Springer International Publishing,
2018, pp. 769-798.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 11/29

Circuit-Dependent Preprocessing (CDP)

Core Ildea

Preprocessing: Every wire z in the circuit is associated with a value [A;].
Online: Each party computes A, where A, =z + \,.

Input

Preprocessing: Random [\,].
Online: [A;] = z + [A\;] then open A,.

Addition
Preprocessing: [\.] = [\;] + [\,].
Online: A, = A, + A,

v

[4] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. “Turbospeedz: Double Your Online SPDZ! Improving
SPDZ Using Function Dependent Preprocessing”. In: Applied Cryptography and Network Security. Ed. by
Robert H. Deng et al. Cham: Springer International Publishing, 2019, pp. 530-549.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 12/29

Circuit-Dependent Preprocessing (CDP)

Multiplication with CDP
Preprocessing:
e Random [A;].
e Multiplication triple ([a], [b], [c]).
e Locally compute [0,] = [a] — [Az], [0y] = [b] — [Ay].
e Open 6, dy.
Online:
o Locally compute [A,] = (Az + 02)(Ay + 6y) — (Ay + 0y)[a] — (Az + 2)[b] + [c] + [Az].
o Open A,.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 13/29

Multiplication with CDP

Multiplication Multiplication with CDP
Preprocessing: Preprocessing:

e Multiplication triple ([al, [0], [¢]). e Multiplication triple ([al, [0], [c]).
Online: e Random [);]

o Locally compute [0,], [6y] @ Locally compute [0;], [dy].
e Open 0z, . @ Open 6, dy.
@ Locally compute [z]. Online:

@ Locally compute [A,].
@ Open A,.

Online Communication 2 — 1 elements/party.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024

14 /29

© Our Constructions
@ Vector Dot Product
@ Truncation
o Comparison

Boshi Yuan et al. (SJTU) MD-ML

Core Idea

@ Previous work used CDP to improve multiplications
@ We use CDP to improve vector dot product, truncation, comparison.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 16 /29

© Our Constructions
@ Vector Dot Product

Boshi Yuan et al. (SJTU) MD-ML

Vector Dot Product

Length-m vector dot product

T-y=> i xi]yi] m invocations of multiplication?

Observations (with CDP)

Can be computed locally!

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 18/29

Vector Dot Product

Vector Dot Product Protocol
Preprocessing;:
e Random [A;].
e Multiplication triples ([a], [0], [¢]).
e Locally compute [5,], [5;]
e Open 6, (5;.
Online:
@ Locally compute [A,].

@ Open A,.

Online communication: 1 element/party, regardless of length m.

Previous: 2m elements/party.

Boshi Yuan et al. (SJTU) MD-ML

USENIX Security Symposium 2024

19/29

© Our Constructions

@ Truncation

Boshi Yuan et al. (SJTU) MD-ML

Truncation

Classical Truncation: [2/] = [z] where z = 2//2¢ FTruncPair
e Random 7.
o r=1//2¢

e Output [r'], [r]

o Generate a truncation pair [r'], [r] where r = 7//2¢.
@ Locally compute [¢] = [2/] + [r]. Open ¢.

o Compute ¢ = ¢//2%.

e Compute [z] =c— [r].

Observations (with CDP)
In CDP we already have A, = 2/ + A\,

A, can be used as r'?

o
o
@ In multiplication 2’ = zy, ./ is random.
@ Combine truncation with multiplication.
°

Generate A/, A, from FrruncPair-

v

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 21/29

Multiplication with Truncation

Multiplication with Truncation
Preprocessing;:
o ([Ax],[Az]) < Frruncpair-
e Multiplication triple ([al, [b], [c]).
o Locally compute [0;], [dy].
e Open 6.
Online:
@ Locally compute [A,/] = A, + A,
e Open A,.
°o A, =A, /24

Boshi Yuan et al. (SJTU)

MD-ML

Online: 1 element in 1 round
Previous: 3 elements in 2 rounds

USENIX Security Symposium 2024

22 /29

© Our Constructions

o Comparison

Boshi Yuan et al. (SJTU) MD-ML

@ Implementation and Evaluation

Boshi Yuan et al. (SJTU) MD-ML

Implementation

@ We implement the online phase of MD-ML in C++.
» Open-source at https://github.com/NemoYuan2008/MD-ML.

o We benchmark the offline phase using MP-SPDZ[!.
o We focus on 2-party setting in the evaluation.
o We compare MD-ML with SPDZq: 9],

[5] Marcel Keller. “"MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security. CCS '20. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 1575-1590.
[6] Ivan Damgérd et al. "New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine
Learning”. In: 2019 IEEE Symposium on Security and Privacy (SP). 2019, pp. 1102-1120.

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 25/29

https://github.com/NemoYuan2008/MD-ML

Online Phase

Online phase benchmarks:
@ AlexNet inference on CIFAR-10, Tiny ImageNet, ImageNet.

LAN Time WAN Time Communication
Dataset

Ours SPDZyw+ Factor Ours SPDZyr+ Factor Ours SPDZoyr+ Factor

CIFAR-10 0.82s 6.80 s 8.3x 34.88 s 3254.7 s 93.3% 24151 MB 2364.82 MB 9.8x
Tiny ImageNet 2.06s 16.40 s 8.0x 53.89s 6774.6s 125.7x 405.00 MB 8274.95 MB 20.4x
ImageNet 738s 8135s 11.0x 188.92s 29785.2s 157.7x 1319.31 MB 31447.70 MB 23.8x

@ ResNet-18 on CIFAR-10

Model and Dataset LAN WAN Communication

ResNet-18 on CIFAR-10 258 s 3629s 4.15 GB

Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024 26 /29

Preprocessing Phase

Preprocessing phase benchmarks:
@ Dot product of length 65536.

@ MultTrunc and LTZ: 1024 values.

. LAN time WAN time Communication
Operation
Ours SPDZyr+ Factor Ours SPDZqr+ Factor Ours SPDZqyr+ Factor
MultTrunc 2.191s 2.189s 0.999x 436.991s 436.383s 0.999x 162.294 MB 162.261 MB 1.0000x
LTZ 2.388s 2.390s 1.001x 435.234s 434636 s 0.999x 165.096 MB 165.079 MB 0.9999x
Dot prod. 8.065s 6.246s 0.775x 283.548s 230.505s 0.813x 1270.23 MB 1124.39 MB 0.8852x
Boshi Yuan et al. (SJTU) MD-ML USENIX Security Symposium 2024

27 /29

© Conclusion

Boshi Yuan et al. (SJTU)

Conclusion

@ Malicious, dishonest majority model
@ New protocols from CDP

» truncation
» vector dot product
» comparison

@ Implementation and benchmarks

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

fus X usenix
e

g Fssocanion
AVAILABLE

REPRODUCED

https://github.com/NemoYuan2008/MD-ML

Thank you!

Boshi Yuan et al. (SJTU)

MD-ML

About me: Boshi Yuan
PhD student at SJTU

nemoyuan2008@sjtu.edu.cn

USENIX Security Symposium 2024

29 /29

https://github.com/NemoYuan2008/MD-ML
nemoyuan2008@sjtu.edu.cn

	Introduction
	Preliminaries
	Our Constructions
	Vector Dot Product
	Truncation
	Comparison

	Implementation and Evaluation
	Conclusion

