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* Limited target task performance
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» Existing research in ML security and privacy typically utilize models trained by
the researchers themselves

 Limited model/dataset variation
* Limited target task performance

* Bridge the gap?
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» Push for open-source and reproducibility

« Abundance of pre-trained models available publicly online
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. public Models

%>

» Push for open-source and reproducibility
« Abundance of pre-trained models available publicly online
» Better resembles models deployed in the wild

- Variable architectures/datasets

- Better task performance

« Better understanding on current attack/defense methods’ performance in
more realistic scenarios

« SecurityNet

¥ Hugging Face |lllI| O kagg|e
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_ SecurityNet
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910 public models

» 220 model architectures (e.g., ResNet-18, BagNet-33) based on 60 different
model types (e.g., ResNet, BagNet)

» 42 different datasets from 13 categories g @ @

 Metadata, e.g., publisher type, published year, venue, model purpose, etc
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Benchmark vs. Security Models
910 public models
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[ 665 benchmark models ] [ 245 security models ]

Models used in trustworthy machine learning
research (security, privacy, and safety)
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Benchmark vs. Security Models
910 public models
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[ 665 benchmark models ] [ 245 security models ]

Models used in trustworthy machine learning
research (security, privacy, and safety)

» Majority of security models are trained on smaller experiment datasets with
simpler and popular architectures

» Performance on target task varies
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Usage of SecurityNet
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« Do existing attacks/defenses behave differently on public models?
- Model stealing
- Membership inference
- Adversarial examples

— Backdoor detection

n



e,

- Model Stealing

o
 Model stealing performance decreases as target task performance increases
 Models trained on some dataset (e.g., CUB) are more difficult to extract
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Figure 5: The relationship between the model stealing performance (attack accuracy) and the target model’s task accuracy across
various benchmark models when using a partial training set as the auxiliary dataset.
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- _ Model Stealing - Benchmark vs. Security Models
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» Security models with high target task performance reacts similarly to the
attack as benchmark models

 Models that are not trained to high target task performance behaves
differently
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Figure 9: The relationship between the model stealing perfor-
mance (attack accuracy) and the target model’s task accuracy
on CIFAR-10 benchmark and security models.
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- _ Membership Inference
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» Similar to findings in previous work, overfitting is a good predictor for MIA
performance

» Attack methods behavior can vary on larger datasets
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.~ Membership Inference - Benchmark vs. Security
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* Models with high target performance can be more vulnerable to MIA at
similar overfitting level
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Figure 15: The membership inference performance (AUC)
with respect to the target model’s overfitting level on CIFAR-

10 benchmark and security models.

15



e,

Adversarial Examples
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» Attack performance decreases as target task performance increases
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Figure 20: The relationship between the evasion attack effectiveness (target task accuracy drop) and the target model’s task
accuracy across various benchmark models under white-box setting with different epsilons.

0.40

®  Epsilon 0.01 ®  Epsilon 0.01 : ®  Epsilon 0.01
0.35 ®  Epsilon 0.03 H . 0.25 ®  Epsilon 0.03 0.25 ®  Epsilon 0.03
2.0.30 ®  Epsilon 0.1 Soly 00 e a ®  Epsilon 0.1 . a ® Epsilon 0.1
g . ool ©0.20 B : 2020
= oo 4% & o 4 oo, o G oo = 0. .
0025 LA : [a) . o e . [a]
oy - Z0.15 : 5% >0.15 0 a0
gox g . R §0 Lo, g
3 S 24 5
8 0.15 8 0.10 g 0.10 .
< < . < |
0.10 oo = 0.05
0.05 By, . .
0.05 ° . e . o T . . I
: - St Yaraseisne e . T YO 000 e
0.00 0.00
092 093 094 095 096 097 0.96 097 0.98 045 050 055 060 065 070 075 080
Target Task Accuracy Target Task Accuracy Target Task Accuracy
(a) CIFAR-10 (b) SVHN (c) ImageNet-1k

Figure 21: The relationship between the evasion attack effectiveness and the target model’s task accuracy across various
benchmark models under the black-box setting with different epsilons.
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. . Backdoor Detection
« Evaluate detection methods' false positive rates

« Neural Cleanse has high false positive rates on evaluated public models

« External factors (e.g., runtime) can prohibit methods being deployed
practically

Table 1: Backdoor detection performance (false positive rate)
on CIFAR-10 and SVHN models. Runtime is from CIFAR-

10’s ResNet-18 model.

Detection Method | CIFAR-10 SVHN Runtime

Neural Cleanse | 20.9% 13.7% 802.1s
STRIP 0.0% 0.0% 32.1s
NEO 0.0% 0.0% 18.0s
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. _ Conclusion

 Attack/defense behavior can vary on
public models

» Advocate for evaluation on public
models for more representative results
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Find your next model through SecurityNet!
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« SecurityNet simplifies searching for
appropriate models
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