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• Bridge the gap?

Background
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• Push for open-source and reproducibility 

• Abundance of pre-trained models available publicly online

• Better resembles models deployed in the wild

− Variable architectures/datasets

− Better task performance

• Better understanding on current attack/defense methods’ performance in 
more realistic scenarios

• SecurityNet

Public Models
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SecurityNet

…

• 220 model architectures (e.g., ResNet-18, BagNet-33) based on 60 different 
model types (e.g., ResNet, BagNet)

• 42 different datasets from 13 categories

• Metadata, e.g., publisher type, published year, venue, model purpose, etc

…

910 public models
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Benchmark vs. Security Models
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665 benchmark models 245 security models
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Benchmark vs. Security Models

…

910 public models

665 benchmark models 245 security models

Models used in trustworthy machine learning 
research (security, privacy, and safety)

• Majority of security models are trained on smaller experiment datasets with 
simpler and popular architectures

• Performance on target task varies



• Do existing attacks/defenses behave differently on public models?

− Model stealing

− Membership inference

− Adversarial examples

− Backdoor detection

Usage of SecurityNet
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• Model stealing performance decreases as target task performance increases

• Models trained on some dataset (e.g., CUB) are more difficult to extract 

Model Stealing
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• Security models with high target task performance reacts similarly to the 
attack as benchmark models

• Models that are not trained to high target task performance behaves 
differently

Model Stealing - Benchmark vs. Security Models
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• Similar to findings in previous work, overfitting is a good predictor for MIA 
performance

• Attack methods behavior can vary on larger datasets

Membership Inference
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• Models with high target performance can be more vulnerable to MIA at 
similar overfitting level

Membership Inference - Benchmark vs. Security
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Adversarial Examples

• Attack performance decreases as target task performance increases
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• Evaluate detection methods’ false positive rates

• Neural Cleanse has high false positive rates on evaluated public models

• External factors (e.g., runtime) can prohibit methods being deployed 
practically

Backdoor Detection



Find your next model through SecurityNet!

Conclusion

• Attack/defense behavior can vary on 
public models

• Advocate for evaluation on public 
models for more representative results

• SecurityNet simplifies searching for 
appropriate models


