

*LaserAdv***: Laser Adversarial Attacks on Speech Recognition Systems**

Guoming Zhang¹, Xiaohui Ma¹, Huiting Zhang¹, Zhijie Xiang¹, Xiaoyu Ji², Yanni Yang¹, Xiuzhen Cheng¹ and Pengfei Hu¹ ¹Shandong University, China $\frac{2Z}{\text{height}}$ University, China

{guomingzhang, maxiaohui, zhanghuiting, xiangzhijie, yanniyang, xzcheng, phu}@sdu.edu.cn xji@zju.edu.cn

LightCommands [Usenix'20] *LaserAdv*

- **Broader range of vulnerable devices**
- Improved power efficiency and attack stealth
- Longer attack range

Recorded acoustic (top) and laser-based (bottom) perturbations with 5 different devices

➢**Additional noise, Weak Response, Distortion caused by FSF**

■ **Assumption**

➢ Attacker with limited resources, only has detailed knowledge of one ASR system – DeepSpeech, other two systems (Whisper and iFlytek) not.

 \triangleright Laser perturbations are emitted when the victim is actively speaking.

■ Attack Goal

- ➢ **Synchronization-free**
- ➢ **Universal**
- ➢ **Transferability**
- ➢ **Inaudible and targeted**

◼ **Basic Problem Formulation**

arg min δ $L(f(x + \delta), y')$) (1)

 $L(\cdot)$ refers to the loss function of a white-box system, which in our work is DeepSpeech.

◼ **Transferability in Black-box ASRs**

Observation

Different ASR models, despite their unique structures and parameters, often capture similar high-level features for targeted voice commands.

arg min δ $\mathbb{E}_{x \sim \mathcal{S}} L(f(x + \delta), y')$ (2)

S represents the similar distribution of the audio inputs, and x is randomly sampled from S.

LaserAdv **Design**

■ Time and Content Independent

Time Independent

Randomly choose a time delay τ uniformly within the range from 0 to $N - M$ to compute the gradient at each iteration, where *M* and *N* are the length of δ and x .

Content Independent

- ➢ Generate perturbations across a wide range of audio inputs.
- \triangleright Normalize and adjust the volume of audio inputs within the dataset.

arg min δ $\mathbb{E}_{\tau \sim \mathcal{T}, x \sim \{\mathcal{S}, \mathcal{D}\}} L(f(x \cdot i + \delta(t - \tau)), y')$) (3)

Let $\mathcal{T} = \{ k d \mid k \in \mathbb{N}, 0 \leq k \leq \frac{M}{d} \}$ $\frac{d}{d}$, where d is the number of sample points, which can be set to greater than 20. \mathcal{D} represents the distribution of audio inputs x. Parameter *i*, which is adjusted between 0.1 and 1, is specifically designed to normalize and adjust the volume of audio inputs within the dataset. **6**

◼ **Physical Adversarial Perturbation**

➢ *Dealing with Low Sensitivity*

- \triangleright Some devices with MEMS microphones are insensitive to lasers.
- \triangleright Receive only a low intensity of laserinduced adversarial perturbations.

- ➢ **Impose certain constraints on the amplitude**:
- \triangleright Parameter *b* is determined by the device's frequency response.
- \triangleright A lower bound a on the perturbation, avoiding overly stringent constraints that could hinder the generation process.

■ **Physical Adversarial Perturbation**

➢ *Dealing with FSF Channel*

We propose a Selective Amplitude Enhancement method based on Time-Frequency Interconversion **(SAE-TFI)** aimed at compensating for the attenuation of high-frequency components.

◼ **Physical Adversarial Perturbation**

➢ *Dealing with FSF Channel*

We propose a Selective Amplitude Enhancement method based on Time-Frequency Interconversion **(SAE-TFI)** aimed at compensating for the attenuation of high-frequency components.

$$
\arg \min_{\delta} \mathbb{E}_{\tau \sim \mathcal{T}, x \sim \{\delta, \mathcal{D}\}, h \sim \{H_1, H_2\}} L(f(x \cdot i + \delta(t - \tau)), y') \tag{4}
$$
\n
$$
\text{subject to} \quad a \leq \delta \leq b - \text{Amp}
$$
\n
$$
\text{SIFT} \quad \text{Frequency} \quad \text{SIFT} \quad \text{Enhancement} \quad \text{STFT} \quad \text{STFT} \quad \text{STFT} \quad \text{STFT} \quad \text{STFT} \quad \text{Fri} \quad \text
$$

 Frequency *STFT Enhancement* **Domain**
Population impulse response (RIR) sampled from the collected distribution H_1 and H_2 in the audible channel and laser channel, where $\hat{\delta} = h \otimes F(\delta(t - \tau)) + n$, a and b are parameters restricting the amplitude of the perturbation $\hat{\delta}$, h is the room respectively. *n* denotes the Gaussian white noise, and $F(\cdot)$ represents the band-pass filter.

■ **Experiment Settings**

- ➢ **3 ASR models:** DeepSpeech, iFlytek, Whisper.
- ➢ **6 smartphones:** Huawei Enjoy 20 Pro and Mate 60 Pro, Honor 20 Pro, Samsung Galaxy S9, Redmi K30 Ultra, Oppo Reno 9.
- ➢ **Dataset:** 12,260 voice commands.
- ➢ **Laser diode:** 5mW red laser diode with a wavelength of 650 nanometers.
- ➢ **Metric:** Attack success rate.
- ➢ **Setup:**

■ **Overall Performance**

➢ A single perturbation can cause DeepSpeech, Whisper and iFlytek, to misinterpret any of the 12,260 voice commands as the target command with success rate of up to 100%, 92% and 88%, respectively.

- **Impact of Varying Laser Power Levels**
- **Impact of Attack Distance**
- **Impact of Different Smart Devices**
- **Impact of Loudness of Perturbations or Malicious Commands**
- **Impact of Different Angles**
- **Impact of Different Ambient Noise…**

■ **Impact of Varying Laser Power Levels**

➢ The maximum power of laser diode is 6mW.

➢ Upon reaching the rated power of the laser diode at 5mW, a 100% success rate can be achieved.

■ Impact of Loudness of Perturbations or Malicious Commands

➢ *LaserAdv* requires substantially lower perturbation intensity compared with LightCommands.

Impact of Attack Distance

Comparison with LightCommands

Attack on smartphone

Long range attack

 \triangleright In a scenario where the user interacts with the ASR, the maximum attack distance of *LaserAdv* is 120 meters, while that of LightCommands is 80 meters.

■ **Impact of Different Smart Devices**

➢The attack on Honor and Samsung yields the most favorable results. \triangleright The success rate exceeds 72%.

- We introduce *LaserAdv*, a new method for launching adversarial attacks on ASR systems via laser perturbations.
- We propose a SAE-TFI method and further optimized the IAP generation objective function to facilitate more practical attack scenarios.
- Our evaluation results show the potential of *LaserAdv* in successfully attacking three systems, including DeepSpeech, iFlytek and Whisper. In the presence of user speech, the maximum distance can be up to 120 m.

Thanks for your listening! Q & A

Guoming Zhang¹, Xiaohui Ma¹, Huiting Zhang¹, Zhijie Xiang¹,

Xiaoyu Ji², Yanni Yang¹, Xiuzhen Cheng¹ and Pengfei Hu¹

¹Shandong University, China $\frac{2Z}{\text{height}}$ University, China {guomingzhang, maxiaohui, zhanghuiting, xiangzhijie, yanniyang, xzcheng, phu}@sdu.edu.cn xji@zju.edu.cn