
HIVE: A Hardware-assisted Isolated Execution
Environment for on AArch64

Zhongguancun Laboratory

Patrick Peihua Zhang, Chenggang Wu, Xiangyu Meng, Yinqian Zhang, Mingfan Peng,
Shiyang Zhang, Bing Hu, Mengyao Xie, Yuanming Lai, Yan Kang, and Zhe Wang

Outline

ConclusionVerifier

High-level
Design

Evaluation

Detailed
Design

What is
eBPF?

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

What is extended Berkeley Packet Filter (eBPF) ?

eBPF can be used to safely extend the kernel without changing kernel code or loading kernel modules

What is extended Berkeley Packet Filter (eBPF) ?

kernel provides an execution environment for eBPF

Registers (r0-r10)

Program Context

Maps (key-value)

Helper Functions

BPF (Kernel) Stack

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

We analyzed all (400+) security checks and summarized them into 20 security properties.

Security properties ensured in the verifier

We analyzed all (400+) security checks and summarized them into 20 security properties.

Security properties ensured in the verifier

<<rx>>
type,range

<<ry>>
type,range

state machine

We analyzed all (400+) security checks and summarized them into 20 security properties.

Security properties ensured in the verifier

Is rx initialized ? Is rx+off+size OOB?

Is rx+off speculatively safe?Is rx a pointer ?

<<rx>>
type,range

<<ry>>
type,range

state machine

Security Checks

based
on

We analyzed all (400+) security checks and summarized them into 20 security properties.

Security properties ensured in the verifier

Is rx initialized ? Is rx+off+size OOB?

Is rx+off speculatively safe?Is rx a pointer ?

<<rx>>
type,range

<<ry>>
type,range

state machine

Security Checks

based
on

Simulator

update

Security goals at design level

Security Goal Description Against Attacks Corresponding Security Properties

SG-1: Memory
Safety

Program can only access BPF memory, and
specific kernel objects such as context.

OOB Access
BPF object OOB I/II, kernel object OOB I/II,
permission violation I/II, type mismatch

SG-2:
Information

Leakage
Prevention

Program cannot write pointers into maps, and
calculation among pointers is not allowed.

Layout Leakage
pointer leakage I/II, offset leakage,
type mismatch

Program cannot read uninitialized information. Uninitialized Read uninit register read, uninit stack read I/II

Program cannot speculatively access areas
outside the BPF program's memory.

Spectre Spectre V1 filter/masking, Spectre V4 barrier

SG-3: DoS
Prevention

Program cannot execute for too long. Denial-of-Service time out, deadlock

Program cannot crash while executing. Crash Kernel kernel stack crash I, kernel stack crash II

Three security goals: memory safety, information leakage prevention, and DoS prevention.

Integrity Confidentiality Availability

Dilemma of Static Analysis

Correctness dilemma:
unsafe programs can
pass the verification

Capability dilemma:
complex programs can not
pass the verification

The verification-based method has become the bottleneck of eBPF.

39

3

6

16
Verifier

JIT compiler

Map management

Others

Verifier contributes the most of CVEs State Explosion

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Our Key Idea: Build an isolation environment

System Calls

Linux Kernel (EL1)

Kernel-mode
Applications (BPF)

BPF Helper Calls

EL0 EL1

Kernel Code Kernel Data

U
se

r
S

p
ac

e

K
e

rn
e

l S
p

ace
BPF Code

BPF DataUser Data

User-mode
Applications

User Code

User Data U-Page
Unprivileged Page

P-Page
Privileged Page

Our Key Idea: Build an isolation environment -- HIVE

U-Page
Unprivileged Page

P-Page
Privileged Page

SG-1: EL-based memory isolation with LSU to de-privilege BPF programs,
SG-2: Independent BPF address space, and SG-3: Exception roll-back

* Unprivileged load/store (LSU) instructions are treated as at EL0, no matter which EL they are running on.

Kernel-mode
Applications (BPF)

User-mode
Applications

System Calls

Linux Kernel (EL1)

BPF Helper Calls

EL0 EL1

Kernel Code (LS) Kernel Data

U
se

r
S

p
ac

e

K
e

rn
e

l S
p

ace
User Code (LS) BPF Code (LSU)

BPF DataUser Data

B
P

F S
p

a
ce

Challenges——BPF programs are highly coupled to Linux kernel

• BPF objects require object-grained isolation.
– Metadata (e.g., pointers) is embedded in BPF objects and cannot be accessed.

– EL-based memory isolation cannot provide such sub-page protection.

• Kernel objects need to be accessed securely.
– BPF programs can directly access specific (discontinuous) fields of kernel objects.

– EL-based memory isolation prevents such access and cannot provide such fine-grained protection.

• … …

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Handling BPF objects

kernel stack

local

bar’s local

ret addr

callee-saved

foo’s local

callee-saved

ret addr

x25

sp

BPF objects contain BPF-inaccessible metadata

Handling BPF objects -- Compartmentalization

local

ret addr

callee-saved

kernel stack

callee-saved

ret addr

sp

bar’s local

foo’s local

BPF stack

x25

① stack separation

kernel stack

local

bar’s local

ret addr

callee-saved

foo’s local

callee-saved

ret addr

x25

sp

Handling BPF objects -- Compartmentalization

local

ret addr

callee-saved

kernel stack

callee-saved

ret addr

sp

bar’s local

foo’s local

BPF stack

x25

bucket bucket

hlist*
hash

value

hlist*

hlist*
hash

value

hlist*

bucket bucket

hlist*
hash

hlist*

hlist*
hash

hlist*

value* value*

replace the values with
the pointers to them

original hash_map hash_map

maps values② maps separation
① stack separation

value value

kernel stack

local

bar’s local

ret addr

callee-saved

foo’s local

callee-saved

ret addr

x25

sp

③ packets separation

Dedicated
Mem. Pool

Handling BPF objects -- Compartmentalization

local

ret addr

callee-saved

kernel stack

callee-saved

ret addr

sp

bar’s local

foo’s local

BPF stack

x25

bucket bucket

hlist*
hash

value

hlist*

hlist*
hash

value

hlist*

bucket bucket

hlist*
hash

hlist*

hlist*
hash

hlist*

value* value*

replace the values with
the pointers to them

original hash_map hash_map

maps values② maps separation
① stack separation

value value

kernel stack

local

bar’s local

ret addr

callee-saved

foo’s local

callee-saved

ret addr

x25

sp

BPF Space Kernel Space User Space

③ packets separation

Dedicated
Mem. Pool

Direct Memory Access Isolation (SG-1)

1. BPF program cannot access the kernel space.
• due to LSU cannot access P-pages

BPF Space User Space

P-Page: Privileged PageU-Page: Unprivileged Page

❶

Kernel Space BPF(LSU)App

Direct Memory Access Isolation (SG-1)

1. BPF program cannot access the kernel space.
• due to LSU cannot access P-pages

BPF Space User Space

P-Page: Privileged PageU-Page: Unprivileged Page

❶❷ ❸

Kernel Space BPF(LSU)App

2. BPF program cannot access the user space.
• E0PD0 forbids unprivileged access to lower half space

3. User program cannot access the BPF space
• E0PD1 forbids unprivileged access to higher half space

Preventing Info. Leak (SG-2)

CSV3 patch

Independent address space (SG-2.1)

BPF space does not contain kernel layout information.

Use after initialization (SG-2.2)

BPF space is Initialized during BPF program loading.
All BPF-used registers are cleared when helper returns.

Convert Spectre to Meltdown (SG-2.3)

The CSV3 patch forbids the speculatively loaded data with a
permission fault to be used to form an address.

LSU

mov xn, xzr

Secure and Passive DoS Prevention (SG-3)

Exceptions Capturing

HIVE passively captures all triggered exceptions,
rolls back the state to the entry point of the

program, and unloads it.

Execution Timing

HIVE maintains a timetable for each executing
BPF program to track their execution time.

preventing kernel crash preventing execution without terminating

How do we identify memory access to kernel objects?
How do we prevent attacks against PA (e.g., replace, Spectre)?
How do we prevent signed pointers from being leaked?

Please read the paper if you are interested.

Handling Kernel Pointers in BPF Program -- Our Insight

1. These kernel pointers cannot be modified.

2. De-referenced points must be exclusive.

3. Accessing privileged-pages.

ARM Pointer Authentication (PA)
can ensure the pointer integrity.

Regular Load/Store Instruction
can access the kernel space normally.

New solution for SG-1 and SG-2

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Conclusion

Evaluation

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Security Evaluation

Real attacks against the security properties.

Performance Evaluation

We selected 161 BPF programs from BCC and Tracee.

Complexity Evaluation

The ultimate goal of eBPF is to “replace kernel modules as the de-facto means of extending the kernel”.

Conclusion

Evaluation

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

Evaluation

Outline

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

Conclusion

• Verification-based method has become the bottleneck of eBPF.

• We provide a hardware-backed isolation environment – Hive.
– De-priviledged and decoupled BPF.

– Special design for accessing kernel objects.

• Hive can provide the same security guarantees with low runtime overhead.

• Also addressed the capbility issue.
– Now BPF programs can be as complex as they want.

Thanks

HIVE

Verifier

High-level
Design

Detailed
Design

What is
eBPF?

{zhangpeihua; wangzhe12}@ict.ac.cn

Conclusion

Evaluation

Isolation for the BPF Space

1. BPF program cannot access the kernel space.
• due to LSU cannot access P-pages

2. BPF program cannot access the user space.
• E0PD0 forbids unprivileged access to lower half space

3. User program cannot access the BPF space
• E0PD1 forbids unprivileged access to higher half space

4. Helpers cannot be abused to access the kernel space.
• pointer parameters are masked when calling helpers

5. Helpers can access unprivileged BPF space transparently.
• pointers are redirected to the shadow BPF space

BPF Space User Space
Shadow BPF

Space

P-Page: Privileged PageU-Page: Unprivileged Page

Isolation of direct memory access Sanitization of helpers’ parameters

Only need 1 instruction: orr xn, mask1TB

❶❷ ❸

Kernel Space

❹❺

BPFApp Helpers arg

eBPF Pointer Types: Inclusive and Exclusive Types

L1:
 r0 = *(u32*)r2 + r3
 exit

r2 = ptr_to_stack
 r2 += 8

r2 = ptr_to_mem
 if r3>16 goto L1

Types Point to
Can be

Modified

De-reference

Access form Pinned Loc.

Inclusive BPF object ✓ Arbitrary form ✗

Exclusive Kernel object ✗ constant offset ✓

inclusive_type (10)

ptr_to_packetptr_to_stack

ptr_to_mem

ptr_to_map_value

ptr_to_buf

ptr_to_flow_keys

ptr_to_tp_buffer

ptr_to_map_key

ptr_to_packet_meta

ptr_to_packet_end

exclusive_type (8)

ptr_to_socket

ptr_to_sock_common

ptr_to_func

ptr_to_tcp_sock

ptr_to_map

ptr_to_ctx

ptr_to_xdp_sock

ptr_to_btf_id
L2:
 r0 = *(u32*)r2 + 8
 exit

r2 = ptr_to_ctx
 if r0==0 goto L2

L3:
 r0 = *(u32*)r2 + r5
 exit

r2 = ptr_to_ctx
 if r5>8 goto L3

r2 = ptr_to_socket
 if r4>8 goto L1

r2 += 8
 r0 = *(u32*)r2+8
 exit

❶

❷

❸

❶ ❷ ❸

❸

eBPF Pointer Types: Inclusive and Exclusive Types

Types Point to
Can be

Modified

De-reference

Access form Pinned Loc.

Inclusive BPF object ✓ Arbitrary form ✗

Exclusive Kernel object ✗ constant offset ✓

inclusive_type (10)

ptr_to_packetptr_to_stack

ptr_to_mem

ptr_to_map_value

ptr_to_buf

ptr_to_flow_keys

ptr_to_tp_buffer

ptr_to_map_key

ptr_to_packet_meta

ptr_to_packet_end

exclusive_type (8)

ptr_to_socket

ptr_to_sock_common

ptr_to_func

ptr_to_tcp_sock

ptr_to_map

ptr_to_ctx

ptr_to_xdp_sock

ptr_to_btf_id

Why the exclusive pointer type has so much constraints?

__u32 len;

__u32 pkt_type;

__u32 mark;

…

struct __sk_buff
in eBPF

…

__u32 len;

__u32 data_len;

…

__u32 pkt_type;

…

__u32 mark;

…

struct sk_buff
in Linux kernel

❶ ❷ ❸

Virtual Structure Used for RELOCATION

for accurate pointer tracking.

for relocating the offset.

for enforcing access control.

❶

❷

❸

mov x5, x0 ##not corrupt x0
orr x6, x24, ctx_type

 autda x5, x6
 ldr w1, x5, 8 ## regular LS

/* 1. filter the exception */
if exception instr’s opcode is not ldtr then
 goto label_illegal;
endif
/* 2. find the type and do security check */
foreach obj_type of exclusive_types do
 if auth(%x0, %x24 ∧ obj_type) pass then
 /* perform the security check */
 if access(base:%x5, offset:8, size:4) \
 is in whitelist(program_type, obj_type);
 then patch the auth code; return;
 else goto label_illegal;
 endif
 endif
end foreach
/* 3. uninstall the bpf program */
label_illegal: uninstall_bpf(this_program);

BPF program

… …
 /* R1 stores ctx_ptr
 load sk_buff.len */
 R2 = *(u32*)(R1 + 8)
 … …

/* 1.sign context pointer at
 the program’s entry */
 /* 1.1 load exe_cnt to x24 */
 mov x5, 8
 mov x6, &exe_cnt
 ldadd x5, x24, x6
 /* 1.2 create the modifier */
 orr x6, x24, ctx_type
 /* 1.3 sign the ctx_ptr */
 pacda x0, x6
 … …
 /* 2. load sk_buff.len */
 /* 2.1 placeholder instr */
 nop
 nop
nop

 /* 2.2 load sk_buff.len */
 ldtr w1, x0, 8 ## LSU

Native Code

int len

context obj:
struct sk_buff

... ...

... ...

... ...

JIT

HIVE exception handler

generated code

P
atch

❹

❶

❷

❸

❺

❻

Create Unique Modifier
to avoid the pointer substitution attacks.

Trigger Permission Fault
when access the kernel space via LSU.

Patch Generated Code
to bind the access to the kernel object.

Check Legality
to lock the access

to the target object.

Security Method
Trust on the first access to kernel object

Handling Exclusive Pointer Types——Point-of-use Probing (SG-1)

	Slide 1: HIVE: A Hardware-assisted Isolated Execution Environment for on AArch64
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: What is extended Berkeley Packet Filter (eBPF) ?
	Slide 5: What is extended Berkeley Packet Filter (eBPF) ?
	Slide 6: Outline
	Slide 7: Outline
	Slide 8: Security properties ensured in the verifier
	Slide 9: Security properties ensured in the verifier
	Slide 10: Security properties ensured in the verifier
	Slide 11: Security properties ensured in the verifier
	Slide 12: Security goals at design level
	Slide 13: Dilemma of Static Analysis
	Slide 14: Outline
	Slide 15: Outline
	Slide 16: Our Key Idea: Build an isolation environment
	Slide 17: Our Key Idea: Build an isolation environment -- HIVE
	Slide 18: Challenges——BPF programs are highly coupled to Linux kernel
	Slide 19: Outline
	Slide 20: Outline
	Slide 21: Handling BPF objects
	Slide 22: Handling BPF objects -- Compartmentalization
	Slide 23: Handling BPF objects -- Compartmentalization
	Slide 24: Handling BPF objects -- Compartmentalization
	Slide 25: Direct Memory Access Isolation (SG-1)
	Slide 26: Direct Memory Access Isolation (SG-1)
	Slide 27: Preventing Info. Leak (SG-2)
	Slide 28: Secure and Passive DoS Prevention (SG-3)
	Slide 29: Handling Kernel Pointers in BPF Program -- Our Insight
	Slide 30: Outline
	Slide 31: Outline
	Slide 32: Security Evaluation
	Slide 33: Performance Evaluation
	Slide 34: Complexity Evaluation
	Slide 35: Outline
	Slide 36: Outline
	Slide 37: Conclusion
	Slide 38: Thanks
	Slide 39: Isolation for the BPF Space
	Slide 40: eBPF Pointer Types: Inclusive and Exclusive Types
	Slide 41: eBPF Pointer Types: Inclusive and Exclusive Types
	Slide 42: Handling Exclusive Pointer Types——Point-of-use Probing (SG-1)

